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           Polyploidy, or whole genome duplication (WGD), is now rec-
ognized as a major evolutionary force not only in plants, but also 
in all eukaryotes (e.g.,  Mable, 2003 ;  Gregory and Mable, 2005 ). 
WGD generally results in instant speciation, increasing biodiver-
sity and providing new genetic material for evolution (e.g.,  Levin, 
1983 ,  2002 ). Illustrating the broad impact of polyploidy, an-
cient WGD events have been documented in vertebrates (e.g., 
 Cañestro, 2012 ;  Braasch and Postlethwait, 2012 ), fungi ( Kellis 
et al., 2004 ), and ciliates ( Aury et al., 2006 ); both recent and 
ancient events occur extensively in plants, particularly in lineages 
such as the angiosperms. In fact, researchers have long recognized 
that polyploidy is an inseparable part of angiosperm biology. 

 Perhaps no other single person has contributed more to our 
understanding of polyploidy than George Ledyard Stebbins, Jr., 
one of the leading botanical researchers of the 1900s, with pub-
lications spanning 70 yr. His fi rst paper ( Stebbins, 1929 ) was on 
the Mt. Desert fl ora; his last publication ( Stebbins, 1999 ) was 
“A brief summary of my ideas on evolution,” which appeared 
in the  American Journal of Botany . He was one of the archi-
tects of the Modern Synthesis, and his impact on plant evolu-
tionary biology was immense (e.g., see  Smocovitis, 1997 ,  2001 ; 
 Raven, 2000 ). He had broad systematic and evolutionary inter-
ests, and his research spanned a diverse range of topics, includ-
ing developmental genetics ( Stebbins and Yagil, 1966 ), plant 
evolution, angiosperm phylogeny, and evolutionary mechanisms, 
especially hybridization and polyploidy. This breadth of expertise 

and broad infl uence can be seen simply by considering the 
topics he covered in the 20-plus papers published in the  AJB ; 
these address the origin of the B-genome in wheat ( Sarkar and 
Stebbins, 1956 ), basic questions of plant biology ( Stebbins, 
1964 ), evolution of the grass family ( Stebbins, 1956 ), plant 
morphogenesis ( Stebbins, 1992 ), cytology and growth habits of 
“dicots” ( Stebbins, 1938 ), ancestry of an amphiploid  Viola  
( Stebbins et al., 1963 ), artifi cial and natural hybrids in grasses 
( Stebbins et al., 1946 ), developmental genetics in barley ( Zeiger 
and Stebbins, 1972 ), studies of meiosis in  Paeonia  ( Hicks and 
Stebbins, 1934 ), and chromosome numbers (and polyploidy) in 
 Antennaria  ( Bayer and Stebbins, 1981 ). 

 STEBBINS AND POLYPLOIDY 

 This overview of the current understanding of genome dou-
bling requires appropriate historical context. Plant polyploidy 
has been studied for over a century, dating to research by de 
Vries on  Oenothera lamarckiana  mut.  Gigas  (Onagraceae), 
which was discovered to be a tetraploid ( Lutz, 1907 ;  Gates, 
1909 ), as well as to the suggestion by  Kuwada (1911)  that an 
ancient chromosome duplication occurred in maize ( Zea mays ). 
The spontaneous formation of the allopolyploid  Primula kew-
ensis  was noted at Kew in 1905 and later confi rmed to be a 
tetraploid ( Digby, 1912 ).  Winkler (1916)  generated the fi rst ar-
tifi cial polyploid and is often credited with the fi rst use of the 
term “polyploidy”.  Winge (1917)  proposed hybridization fol-
lowed by doubling of the chromosomes (i.e., polyploidy) as a 
viable means for the origin of new species. Artifi cial hybridiza-
tions in  Nicotiana  (Solanaceae) and  Galeopsis  (Lamiaceae) and 
the production of  Raphanobrassica  (Brassicaceae) confi rmed 
Winge’s hypotheses on the origins of polyploidy ( Clausen and 
Goodspeed, 1925 ;  Müntzing, 1930 ).  Kihara and Ono (1926)  
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must always be taken into account.” This remains insightful as 
current methods permit genomic and proteomic comparisons of 
allopolyploids and diploid progenitors. Stebbins realized that in 
only a few young polyploids are the “exact” parental genotypes 
that gave rise to the new allopolyploid available. 

 However, in other cases, Stebbins’s views, which formed the 
accepted paradigm for decades, have been replaced over the 
past 15 yr by a new paradigm. As we summarize these changing 
views, we stress that our goal is to honor his legacy and his long 
and major impact on an area of study that he not only helped to 
popularize, but for which he also had deep affection. Ledyard 
was always excited by new discoveries. He would certainly 
have been thrilled to see the renewed interest in polyploidy over 
the past 15 yr, stimulated in large part by the availability of 
powerful genetic and now genomic tools as well as advances in 
computational biology. These tools have facilitated in-depth ex-
amination of many of the hypotheses championed by Stebbins 
in a manner not previously possible. In this regard, in our dis-
cussions with Ledyard, we were often impressed with his inter-
est in new methodological advances (e.g., allozymes in the 
1980s and DNA-based research in the late 1980s and 1990s) 
and their applications to questions in evolutionary biology. 

 Generations of polyploid researchers (including those now 
employing genomics and computational methods) are grounded 
in a research foundation that was in large part established by 
Stebbins, whether they recognize this fact or not. His impact 
was enormous and continues to this day—we are all in a sense 
“Stebbinsians”. Modern polyploid researchers should be re-
minded of a quotation often attributed to Isaac Newton, “If I 
have seen further it is by standing on the shoulders of giants.” 
Ledyard was that giant. Our hope is that Ledyard would have 
appreciated the monumental advances in our understanding of 
polyploidy that have been achieved so recently and rapidly. 

 STEBBINS AND THE CENTRAL TENETS OF 
POLYPLOIDY IN THE 1900s 

 Background —    Through several classic books and papers (e.g., 
 Stebbins, 1947 ,  1950 ,  1971 ), Stebbins was largely responsible for 
developing, and certainly popularizing, what became the central 
tenets of polyploid evolutionary thinking. Impressively, these 
views would remain foundational for nearly 50 yr. We identify fi ve 
major themes. (1) Polyploids formed at a moderate frequency in 
angiosperms, for which he provided an estimate of ~30–35% of all 
species. (2) He considered polyploids to be very important over 
shallow evolutionary time but with little long-term evolutionary 
impact—all the evolutionary action was at the diploid level. He 
viewed polyploids, for the most part, as evolutionary dead-ends 
( Stebbins, 1950 ,  1971 ). Furthermore, strong genetic arguments, 
based in part on experiments with artifi cially produced poly-
ploids, were posited for the lack of long-term success of poly-
ploids. (3) Each polyploid species was thought to have formed via 
a single origin with concomitant limited initial genetic variation. 
(4) Genetic buffering, resulting from the combination of multiple 
parental genomes, leads to low rates of fi xation of new mutations 
in polyploids ( Stebbins, 1950 ). The bottleneck associated with 
polyploid formation, coupled with this genetic buffering, sug-
gested that polyploids had limited genetic variation and limited 
potential for adaptive evolution. (5) Autopolyploids were consid-
ered to be extremely rare in nature, based on sterility estimates 
resulting from meiotic irregularities, and were relegated to play-
ing a very minor role in Stebbins’s view of plant evolution. 

developed the terms allopolyploidy and autopolyploidy to dif-
ferentiate between polyploidy accompanied by hybridization or 
not, respectively. Shortly thereafter, other researchers showed 
that many major crops—including wheat, oats, cotton, tobacco, 
potato, and coffee—are polyploid, with evidence provided for the 
parentage of wheat ( McFadden and Sears, 1946 ), cotton ( Beasley, 
1940 ), and tobacco ( Goodspeed and Clausen, 1928 ). 

 Several influential reviews of polyploidy were published 
from the 1930s to the 1950s, including those of  Müntzing (1936) , 
 Darlington (1937) ,  Clausen et al. (1945) , and  Löve and Löve 
(1949) , but as reviewed briefl y below, none were more infl uential 
than those of  Stebbins (1940 ,  1947 ,  1950 ; later publications will 
be discussed further below).  Stebbins (1940)  called attention 
to the importance of polyploidy in plant evolution, and he later 
( Stebbins, 1947 ) built on the framework of earlier students of 
polyploidy and classifi ed polyploids into types (e.g., auto- and 
allopolyploidy). However, the most infl uential work in the area 
of polyploidy was a section of his book  Variation and Evolution 
in Plants  ( Stebbins, 1950) . This synthesis of what was known 
about polyploidy at the time included information on the types of 
polyploids, as well as the evolutionary signifi cance of polyploidy. 
Two of 14 chapters in  Variation and Evolution in Plants  were 
devoted to polyploidy.  Stebbins’ (1971)  later book,  Chromo-
somal Evolution in Higher Plants , was also infl uential and pro-
vided a contemporary summary of polyploidy refl ecting the 
knowledge that had accumulated to that time—including dis-
cussions of ancient polyploidy in angiosperms, as well as re-
cent polyploidy. He returned to the topic of polyploidy again in 
 Stebbins (1985) , where he discussed the role (or lack thereof) that 
polyploidy can play in colonization. 

  Stebbins (1950)  strongly infl uenced thinking about polyploidy 
for over 50 yr. Following  Stebbins (1950) , much attention was 
subsequently focused on polyploid research, including investiga-
tion of polyploid complexes, as well as the complex relationships 
among groups of hybridizing species and polyploid derivatives. 
As a result, polyploidy played a major role in biosystematic re-
search that continued until the era of DNA-based phylogenetics 
(e.g., 1990–present), when systematists shifted much of their at-
tention to tree building ( Soltis et al., 2004 ). However, polyploidy 
has experienced a tremendous resurgence of study during the ge-
nomics era (e.g., 2000– present), and that continues to this day. 

 Polyploidy not only represented a large component of Steb-
bins’s research, it was also one of his favorite topics of discus-
sion, as experienced by D. and P. Soltis during a sabbatical at 
the University of California, Davis, in the fall of 1988. Some of 
his views on polyploidy have withstood the test of time; for 
example, his view of a continuum between auto- and allopoly-
ploidy, and his recognition of the diffi culties in making clear 
distinctions between types of polyploids were on the mark. 
 Stebbins (1971 , p. 132) noted, “…any attempt to maintain a 
division of natural polyploids into two discrete categories, auto-
polyploids and allopolyploids, is more likely to confuse than to 
clarify a very complex system of interrelationships.”  Stebbins 
(1950 ,  1971 ) was also perceptive regarding the possible impor-
tant role of ancient polyploidy in diverse lineages, particularly 
angiosperms, and we discuss this topic more herein.  Stebbins 
(1971 , p. 140) was also astute in summarizing the problems 
involved in comparing a polyploid to its diploid progenitors: 
“One cannot assume that the diploid ancestor or ancestors of a 
modern polyploid species still exist in their original form unless 
good evidence for their existence has been obtained, extinction 
or cytogenetic modifi cation of diploid ancestors since they par-
ticipated in the origin of a polyploid are likely possibilities that 
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is most effective as a means of enabling species groups which 
have reached a certain stage of depletion of their biotypes…to 
adapt themselves to new environmental conditions which arrive 
relatively suddenly. It is much less important in stable environ-
ments and in diploid species which are still widespread and rich 
in ecotypic differentiation.”  Stebbins (1950 , p. 359) further 
noted, “The long-continued evolution needed to differentiate 
genera, families and orders, and phyla appears to have taken 
place chiefl y on the diploid level…”  Stebbins (1950 , p. 366) 
later states “… polyploidy has appeared as a complicating force 
producing innumerable variations on old themes but not origi-
nating any major new departures.” 

 These harsh views regarding the long-term evolutionary po-
tential of polyploids rested on several assumed genetic limita-
tions, as described in the following section. 

  Wagner (1970 , p. 146) similarly argued that while polyploids 
have always existed, they have never diversifi ed or played a 
major role in the evolution of plants and that the study of poly-
ploidy has led researchers to be “carried away with side branches 
and blind alleys that go nowhere.” The prose of Stebbins and 
Wagner prompted the statement, often attributed to both re-
searchers, that polyploids were evolutionary dead-ends. Although 
both authors certainly implied this in their writings, neither au-
thor actually used the term “dead-end”. 

 Despite his view that polyploids had limited long-term evo-
lutionary potential,  Stebbins (1950 , p. 365) perhaps ironically 
inferred, over 60 yr ago, multiple cases of ancient polyploidy in 
angiosperms and other seed plants: “…there is some evidence 
that many genera and even subfamilies of seed plants have had 
a polyploid origin.” He continued (p. 365), “…students of an-
giosperm phylogeny should look for traces of ancient allopoly-
ploidy resulting from hybridization between species which 
were the ancestral prototypes of many of our modern families.” 
In  1971, Stebbins  (p. 124) further stated, “If this is true [that fl ow-
ering plants with  x  = 12 or higher are ancient polyploids] then 
all of the modern species belonging to many prominent families 
such as Magnoliaceae, Winteraceae, Lauraceae, Monimiaceae, 
Fagaceae, Juglandaceae, Salicaceae, Meliaceae, Ericaceae, and 
Oleaceae, are derivatives of evolutionary lines which at some 
time in their history have undergone polyploidy.” Given recent 
genomic insights (below) regarding the importance of ancient 
polyploidy in the origin of many lineages, this has proven to be 
a very astute inference. 

 Polyploids: A single origin with limited genetic poten-
tial —    Stebbins viewed polyploid species as genetically depau-
perate with limited evolutionary potential. A new polyploid 
species was envisioned as forming via a single polyploidization 
event and would therefore exhibit a high degree of genetic uni-
formity across individuals. Following this model of formation, 
an allopolyploid would exhibit no homologous, or segregating, 
variation, only homeologous (nonsegregating) variation. Fur-
thermore, if a mutation were to arise in the polyploid, its effect 
would be masked by either the presence of a homeologous lo-
cus (in an allotetraploid) or multiple alleles (in an autopolyploid). 
Although not impossible, the fi xation of a new mutation is 
much slower in a polyploid than in its diploid parents.  Stebbins 
(1971 , p. 127) correctly noted that “…the large amount of gene 
duplication dilutes the effects of new mutations… polyploids 
have great diffi culty evolving truly new adaptive gene com-
plexes” and that “…chromosome doubling will most often have 
a retarding effect on evolutionary change via mutation, genetic 
recombination, and selection.” Furthermore, this buffering effect 

 We discuss each of these topics in more detail below, fi rst 
providing historical context (see also the review by  Tate et al., 
2005 ). We then revisit these themes and show how they have 
been collectively replaced by a new paradigm of polyploidy. 

 Frequency —    It has long been recognized that polyploidy 
is a major evolutionary force in plants (e.g.,  Muntzing, 1936 ; 
 Darlington, 1937 ;  Clausen et al., 1945 ;  Love and Love, 1949 ; 
 Stebbins, 1950 ;  Lewis, 1980 ;  Grant, 1981 ). In fact, some of these 
early authors had a large impact on Stebbins and his thoughts 
on polyploidy. However, it long proved diffi cult to determine 
the actual frequency of the process in various plant lineages, 
despite numerous attempts to estimate it over the past 70 yr. The 
angiosperms, in particular, have received much attention regard-
ing the occurrence of polyploidy. The standard approach was to 
use base chromosome numbers as a proxy for polyploidy (see 
below). However, only with the recent availability of genomic 
tools has it been possible to obtain better estimates of the fre-
quency of successful polyploidization deeper in time. 

  Stebbins (1950 ,  1971 ) estimated that ~30–35% of angio-
sperm species had formed via polyploidy. This estimate was 
one of the lowest suggested by workers from that time period. 
For comparison, among the earliest estimates for angiosperms, 
 Müntzing (1936)  and  Darlington (1937)  speculated that roughly 
50% of all angiosperm species were polyploid. To understand 
the variation in estimates among authors, it is important to un-
derstand the methodology employed. The estimates generally 
varied based on the cut-off chromosome number used by the 
author for estimating what was diploid and what was polyploid. 
For example,  Stebbins (1971 , p. 124) suggested that “all genera 
or families with  x  = 12 or higher have been derived originally 
by polyploidy...” and noted “that even the numbers  x  = 10 and 
 x  = 11 may often be of polyploid derivation”.  Grant (1981)  hy-
pothesized that fl owering plants with haploid chromosome 
numbers of  n  = 14 or higher were of polyploid origin. With this 
cut-off point, he determined that 47% of all angiosperms were 
of polyploid origin and further proposed that 58% of monocots 
and 43% of “dicots” (note that eudicot was not employed at that 
time) were polyploid.  Goldblatt (1980)  maintained that this es-
timate was too conservative and proposed that taxa with chro-
mosome numbers above  n  = 9 or 10 are of polyploid origin. He 
calculated that at least 70–80% of monocots are of polyploid 
origin.  Lewis (1980)  applied an approach similar to Goldblatt’s 
to “dicots” and estimated that 70–80% were polyploid.  Masterson 
(1994)  used the novel approach of comparing leaf guard cell 
size in fossil and extant taxa from a few angiosperm families 
(Platanaceae, Lauraceae, Magnoliaceae) to estimate polyploid 
occurrence through time. With this method, she estimated that 
70% of all angiosperms had experienced one or more episodes 
of polyploidy in their ancestry. 

 Polyploids as “dead-ends”: Limited importance in diversifi -
cation —     Stebbins (1950 ,  1971 ), as well as another highly infl u-
ential plant biologist of the 1900s, W. “Herb” Wagner, argued 
that while polyploids were frequent in plants, they had limited 
long-term evolutionary potential. This traditional view that 
both strongly promoted maintained that polyploids were “evo-
lutionary noise” ( Wagner, 1970 , p. 146) unimportant to the 
main processes of evolution (e.g.,  Stebbins, 1950 ;  Wagner, 
1970 ). For Stebbins and other students of polyploidy from that 
time period, the evolutionary action was at the diploid, not the 
polyploid, level. For example,  Stebbins (1950 , p. 358) stated, 
“Polyploidy, therefore, may be looked upon as a process which 
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 Dactylis glomerata  (Poaceae), and  Solanum tuberosum  (Sola-
naceae), as well as several “probable” autopolyploids:  Vaccin-
ium uliginosum  (Ericaceae),  Eragrostis pallescens  (Poaceae), 
and  Galium mollugo  and  G. verum  (Rubiaceae). 

  Stebbins (1971 , p. 126) provided a particularly harsh state-
ment regarding autopolyploidy: “autopolyploidy is not a help 
but a hindrance” in natural populations. One section of his 1971 
book ( Stebbins, 1971 , p. 126) is entitled, “The adaptive inferi-
ority of raw autopolyploids and the ways in which it can be 
overcome.” The perceived extreme rarity of natural autopoly-
ploids was attributed to concerns about chromosome pairing 
and segregation. Geneticists such as Stebbins maintained that in 
an autotetraploid, with every chromosome represented four 
times, normal chromosome pairing at meiosis would be diffi -
cult, with multivalent formation leading to reduced fertility. For 
example,  Stebbins (1950 , p. 305) stated, “Of equal and perhaps 
greater signifi cance from the evolutionary point of view than 
those on the morphology and physiology of the plants are the 
effects of polyploidy on fertility and genetic behavior. The 
most conspicuous and universal of these is the reduction of pol-
len and seed fertility in autopolyploids as compared with their 
diploid ancestors.” 

 The above problems with autotetraploids are often noted, but 
 Stebbins (1971)  also considered the buffering effect of an ad-
ditional genome to be particularly signifi cant in autopolyploids. 
He employed a fi gure ( Stebbins, 1971 , his fi g. 5.2, reproduced 
here as  Fig. 1 ),   stating (p. 127), “This fi gure shows the distribu-
tion of variants with respect to a quantitative character in the F 2  
progeny of a cross between two parental individuals [one ex-
ample is diploid and the other an autotetraploid] which differ 
with respect to genes at seven different loci… If inheritance 
is disomic, as in a diploid, the curve of distribution is the 
broader…” He went on, “Tetrasomic inheritance…gives the 
narrower more peaked curve… This diagram shows that ...with 
respect to quantitative characters, chromosome doubling [auto-
polyploidy] in the progeny tends to buffer intermediate geno-
types and reduce the effects of genetic segregation.” He concluded, 
“Hence, this desirable characteristic may also be buffered by 
tetrasomic inheritance.” 

 However, adding to the complexity that is inherent in the cat-
egorization of polyploids,  Stebbins (1950 , p. 318) discussed 
several examples of what he termed “intervarietal autopolyploids.” 
For review, the rank of variety is often used for geographical 
races and well-marked ecotypes within morphologically vari-
able species. Stebbins stated, in reference to intervarietal poly-
ploids, that “this sort may be found to be not uncommon when 
more polyploids are analyzed with this possibility in mind.” 
Intervarietal autopolyploids sensu  Stebbins (1950)  included  Biscu-
tella laevigatum ,  Dactylis glomerata ,  Allium schoenoprasum  
(Alliaceae),  Polygonatum commutatum  (Ruscaceae),  Cuth-
bertia graminea  (Commelinaceae),  Eriogonum fasciculatum  
(Polygonaceae), and “some of the various polyploids of  Vac-
cinium ” (Ericaceae). Given this defi nition, Stebbins was more 
accepting of a broadly defi ned autopolyploid and the impor-
tance of this mechanism in nature. In fact, as genetic data 
made it clear (described later) that autopolyploids were com-
mon, Stebbins later mellowed considerably in his view toward 
autopolyploids. In discussions with Ledyard, he indicated to 
us that autopolyploids, arising from crosses between geneti-
cally differentiated parents of the same species, were indeed 
relatively common “and that is what he had meant all along” 
(statement to D. and P. Soltis, International Botanical Con-
gress, Berlin, 1987). His early concept of autopolyploidy as 

of multiple genomes may extend to the origins of morphologi-
cal variation in a polyploid ( Stebbins, 1950 ,  1971  [pp. 147–148]): 
“Very often, even in complexes on which the basis of phyto-
geographical evidence must be regarded as hundreds of thou-
sands or even millions of years old, the range of morphological 
variability encompassed by all of the tetraploids is less than the 
total range of that found among the diploids…” 

 We now know, however, that polyploid species typically 
arise via multiple origins, and this mode of formation has ge-
netic consequences that offset the limitations perceived by 
Stebbins. Although modern perspectives on recurrent forma-
tion of polyploid species typically trace to the work of  Werth 
et al. (1985a ,  b) , the concept of multiple origins of a polyploid 
species, and the attendant potential for enhanced genetic varia-
tion and long-term success, extends back to at least the 1950s. 
The work of  Ownbey (1950)  and  Ownbey and McCollum 
(1953)  suggested that the newly formed  Tragopogon  allopoly-
ploids from the northwestern United States had formed multi-
ple times. Stebbins was likely aware of Ownbey’s interpretations 
of independent origins of both  T. mirus  and  T. miscellus , given 
that he ( Stebbins, 1971 ) briefl y reviewed Ownbey’s  Tragop-
ogon  research. Perhaps because of Ownbey’s work,  Stebbins 
(1985)  later seemed to recognize the potential genetic variation 
that might be contributed via multiple origins, and he appeared 
to soften his view on the long-term potential of at least some 
polyploids (e.g., grasses).  Stebbins (1985 , p. 824) stated, “The 
hypothesis that polyploids succeed because of their greater tol-
erance of severe ecological or climatic conditions is again re-
jected, and that which postulates secondary contacts between 
previously isolated populations as the principal cause for their 
high frequencies in some groups of angiosperms is favored.” 
He termed this his “secondary contact hypothesis”, and al-
though he provides few details, it seems a prelude to a model in 
which recurrent polyploid formation produces genetically dis-
tinct lineages that subsequently cross, yielding further genetic 
combinations and contributing to the success of the polyploid 
( Soltis and Soltis, 1999 ). 

 Of course, Stebbins, Wagner, and other students of poly-
ploidy from the second half of the 20th century could not have 
foreseen that the genomic revolution would reveal that poly-
ploid genomes are highly dynamic—experiencing numer-
ous genetic changes spurred on following polyploidization, 
including genomic shock and chromosomal, epigenetic, and 
expression-level changes. Polyploid genomes are anything but 
uniform. 

 Limited importance of autopolyploids —    Allopolyploidy has 
historically been considered much more common than auto-
polyploidy in nature. That trend continues today, but it is now 
recognized that both are extremely important in nature (e.g., 
 Soltis and Soltis, 1993 ;  Ramsey and Schemske, 1998 ;  Soltis 
et al., 2004 ;  Tate et al., 2005 ;  Wendel and Doyle, 2005 ).  Stebbins 
(1950)  suggested that only  Galax aphylla  (now  Galax urceo-
lata,  Diapensiaceae) was an unambiguous example of auto-
polyploidy in nature. He also proposed  Sedum ternatum  and  S. 
pulchellum  (Crassulaceae) as additional possible examples, 
with  Fritillaria camschatcensis  (Liliaceae) representing “a 
probable autotriploid.”  Stebbins’s view (1950)  on the rarity of 
autopolyploids was adhered to by other giants in the fi eld of 
plant evolution. For example,  Grant (1981)  also suggested that 
autopolyploids were extremely rare in nature, but his list of clear-
cut autopolyploids was larger than that of Stebbins and in-
cluded  Galax aphylla ,  Biscutella laevigatum  (Brassicaceae), 
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but many earlier perceptions have been overturned: polyploidy 
is ubiquitous in green plants, with all angiosperms and all seed 
plants of ancient polyploid origin; polyploids are not “dead-
ends”, but instead ancient polyploidy events are often associ-
ated with major clades; genetic factors contribute to the success 
of polyploids—for example, polyploids typically form more 
than once with important long-term genetic consequences, and 
polyploid genome evolution is highly dynamic, with major 
changes that begin to occur rapidly following polyploidization; 
and autopolyploidy is common and a major force in plant evo-
lution. In the second half of this paper, we revisit each of these 
points. 

 High frequency of polyploidy —    Recent investigations of en-
tire genomes have dramatically altered the polyploidy para-
digm. Genomic studies have shown that perhaps all eukaryotes 
possess genomes with considerable gene redundancy, much of 
which is the result of (ancient) WGD events. Ancient, as well as 
more recent, polyploidy events have been documented in verte-
brates (e.g.,  Van de Peer et al., 2010 ;  Braasch and Postlethwait, 
2012 ;  Cañestro, 2012 ), fungi ( Hudson and Conant, 2012 ), and 
ciliates ( Aury et al., 2006 ) and occur extensively in green 
plants. Within plants, the incidence of polyploidy appears to be 
low or absent in liverworts, hornworts, cycads, and conifers, 
but is frequent in lycophytes, monilophytes, and angiosperms 
( Husband et al., 2013 ).  Wood et al. (2009)  estimated that of 
speciation events, 15% for fl owering plants and 31% for ferns 
directly involve polyploidy. Polyploidy is also prevalent in other 
photosynthetic lineages, such as red algae (reviewed by  Husband 
et al., 2013 ). 

 In angiosperms, the importance of ancient polyploidy be-
came apparent initially with the complete sequencing of the 
genome of  Arabidopsis thaliana , which has a very small ge-
nome (157 Mb;  Bennett et al., 2003 ). This species was chosen 
for sequencing because of its small genome, which was “un-
doubtedly” diploid. Nonetheless, complete genome sequencing 
revealed numerous duplicate genes, suggesting two or three 
rounds of genome duplication ( Vision et al., 2000 ;  Bowers et al., 
2003 ). Because  A. thaliana  has only fi ve pairs of chromosomes, 
it was not previously classifi ed as a polyploid using the com-
mon “cut-off” criteria employed in typical evaluations of poly-
ploidy (e.g.,  Stebbins, 1950 ,  1971 ). 

 Recent genomic investigations not only indicate that poly-
ploidy is ubiquitous among angiosperms, but also suggest other 
major ancient WGD events ( Van de Peer et al., 2009 ,  2010 ). 
These include an ancient WGD that preceded the origin of 
all extant angiosperms ( Jiao et al., 2011 ;   Amborella  Genome 
Project, 2013 ), as well as two WGDs that occurred in close tem-
poral succession early in eudicot evolution ( Jiao et al., 2012 ). 
At least 50 independent ancient WGDs are distributed across 
fl owering plant phylogeny ( Cui et al., 2006 ;  Soltis et al., 2009 ; 
 Van de Peer et al., 2009 ,  2011 ; M. S. Barker et al., University 
of Arizona, personal communication). Other ancient polyploidy 
events occurred close to the origin of monocots, Poales, Solanales, 
and Lamiales. All of the angiosperm genomes sequenced to 
date exhibit evidence of ancient polyploidy events (Com-
parative Genomics [CoGe] website,  http://genomevolution.org/
CoGe/ ). 

 Although Stebbins did not realize the ubiquity of polyploidy, 
he did, however, propose that ancient polyploidy was some-
times important, suggesting that some angiosperm families may 
be the result of this process. In this regard, genetic/genomic 
data continue to provide evidence that this indeed is the case. 

polyploidization of a single individual ( Stebbins, 1950 ) there-
fore gave way to a broader perspective. Nonetheless, his 
strong views regarding the minor role of autopolyploidy in 
nature had a huge impact, hindering research into this type 
of polyploidy for decades. 

 THE NEW POLYPLOIDY PARADIGM 

 As early as the 1980s, new perspectives began emerging that 
countered many aspects of the Stebbinsian paradigm.  Levin’s 
(1983)  classic paper emphasized the role of polyploidy—par-
ticularly autopolyploidy—in generating novelty at a range of 
organizational levels. In response to Stebbins’s statement that 
chromosome doubling is not a help but a hindrance,  Levin 
(1983 , p. 1) stressed that “the idea that chromosome doubling 
per se hinders progressive evolution becomes less tenable as 
information on autopolyploids increases”. This seminal paper 
was then followed by another paper challenging traditional 
views of autopolyploidy (e.g.,  Soltis and Rieseberg, 1986 ). 
Subsequent reviews compiled emerging data on topics ranging 
from multiple origins of polyploid species to the dynamic na-
ture of polyploid genomes (e.g.,  Soltis and Soltis, 1993 ,  1999 , 
 2000 ;  Wendel, 2000 ;  Levin, 2002 ). The current polyploidy 
paradigm benefi ts much from the contributions of Stebbins and 
others (e.g.,  Clausen et al., 1945 ;  Wagner, 1970 ;  Grant, 1981 ), 

 Fig. 1. The buffering effect of tetrasomic inheritance (random pairing 
between homologues in an autotetraploid). Depicted is the distribution of 
variation in F 2  progeny of a diploid (with disomic inheritance, in blue) vs. 
an autotetraploid (with tetrasomic inheritance, in tan). The traditional view 
of this “buffering effect” was that it might mask benefi cial alleles and re-
tard their fi xation. Today, this same principle of genetic redundancy has 
been proposed, in some cases, to be adaptive in the short term, as deleteri-
ous alleles are also masked ( Mable and Otto, 2001 ). (Redrawn from fi g. 5.2 
of  Stebbins, 1971 ).   
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burst in species richness, typically a few nodes after the WGD 
( Soltis et al., 2009 ). Ancient polyploidy also seems to be associ-
ated with increases in plant diversity in Asteraceae, Brassica-
ceae, Cleomaceae, and Fabaceae ( Soltis et al., 2009 ;  Doyle, 
2012 ;  Schranz et al., 2012 ). Within most of these clades, there 
is phylogenetic asymmetry “with a species-rich crown group 
and a species-poor sister clade” ( Schranz et al., 2012 , p. 147). 
Moreover, there may be a lag-time or delay between the WGD 
event and subsequent radiations ( Fig. 2 ).    Schranz et al. (2012 , 
p. 147) further proposed that “ultimate success of the crown 
group does not only involve the WGD and novel key traits, but 
largely subsequent evolutionary phenomena including later mi-
gration events, changing environmental conditions and/or dif-
ferential extinction rates.” 

 Mike Barker et al. (University of Arizona, personal commu-
nication) found that roughly half of the 59 ancient WGD events 
that they examined are associated with diversifi cation. In addi-
tion, using a large phylogenetic tree for angiosperms,  Tank 
et al. (2012)  demonstrated statistically that several major ancient 
polyploidy events closely coincide with bursts in diversifi ca-
tion, but with these radiations typically occurring a few nodes 
after the ancient WGD events. 

 Other evidence indicates increases in biological diversity 
and/or complexity in polyploid lineages ( De Smet and Van de 
Peer, 2012 ). Phylogenetic dating analyses of several ancient 
WGD events suggest an association between the Cretaceous–
Tertiary (KT) extinction and WGD ( Fawcett et al., 2009 ; Vanneste 
et al., 2014): polyploidy may have contributed to lineage survival 

Isozyme data long ago showed that several families suggested 
by  Stebbins (1971)  to be ancient polyploids—Trochodendraceae, 
Salicaceae, Magnoliaceae, Lauraceae, and Calycanthaceae—in 
fact exhibited duplicate gene expression, consistent with his 
hypothesis ( Soltis and Soltis, 1990 ). Genomic evidence now in-
dicates that ancient polyploidy has played a major role in a num-
ber of additional families, including Asteraceae, Brassicaceae, 
Cleomaceae, Fabaceae, Poaceae, and Solanaceae (reviewed by 
 Soltis et al., 2009 ). 

 Extant seed plants also share an additional round of ancient 
polyploidy ( Jiao et al., 2011 ), with evidence for additional ge-
nome duplication events in ferns and other tracheophytes 
( Barker and Wolf, 2010 ).  Wood et al. (2009)  estimated that 
~35% of extant fl owering plant species are of recent polyploid 
origin. As a result, a large fraction of genes, perhaps as many as 
67% in some species, may be directly derived from ancient 
WGD ( Barker et al., 2012 ). 

 A new look at polyploidy and diversifi cation —    The identifi -
cation of ancient WGD events at many points in angiosperm 
phylogeny provides the opportunity to assess the correspon-
dence between inferred genome duplication events and major 
diversifi cations—the role of polyploidy in “macrodiversifi ca-
tion.” Many ancient WGDs are associated with key diversifi ca-
tion events in angiosperm evolution, such as the origins of 
angiosperms, eudicots, and monocots. 

 Examination of polyploidy events in Brassicaceae, Poaceae, 
and Solanaceae suggests that ancient WGD was followed by a 

 Fig. 2. Following a whole genome duplication (represented as stars), there appears to be a lag-time before diversifi cation (modifi ed from  Schranz 
et al., 2012 ). Trees drawn following the topologies of  Soltis et al. (2012)  and  Stevens (2001  onward).   
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( Doyle et al., 2003 ).  Tragopogon miscellus  and  T. mirus  may 
have formed over 20 and 10 times, respectively, in eastern Wash-
ington and adjacent Idaho (USA) in just the past 80 yr—multiple 
polyploidizations have even occurred within a single small town 
( Symonds et al., 2010 ;  Soltis et al., 2012 ). Exceptions in which 
polyploidy appears to have occurred only once in the formation 
of a species include salt marsh grass,  Spartina anglica  (see  Ain-
ouche et al., 2012 ), and peanut,  Arachis hypogaea  ( Kochert et al., 
1996 ). Therefore, multiple origins are now considered to be the 
rule in polyploid evolution ( Soltis and Soltis, 1993 ,  1999 ). 

 Recurrent polyploidization has important implications for 
concepts of genetic diversity within polyploid species. One of 
the key arguments  Stebbins (1950)  made against the long-term 
evolutionary importance of polyploid species was their lack of 
genetic diversity as a result of the bottleneck associated with 
their formation. The general view among systematists today is 
that independently formed lineages may over time produce a 
tokogenetic (that is, reticulating genealogical) network, incor-
porating genetic variation from genetically differentiated pa-
rental individuals and generating new genotypes through gene 
fl ow and recombination ( Fig. 3 ;    Soltis and Soltis, 1999 ;  Tate 
et al., 2005 ;  Soltis et al., 2014 ). The notion of recurrent poly-
ploidization has shattered earlier perceptions of polyploids as 
genetically depauperate species of uniform genotype that repre-
sent evolutionary dead-ends. 

 A question of great interest is: Can populations of independent 
origin interbreed, or do they represent reproductively isolated 
lineages? Experimental demonstration of such interbreeding 
among polyploid lineages of separate origin is still rare. Recent 
work on  Mimulus  indicates that polyploid populations of separate 
origin are interfertile ( Sweigart et al., 2008 ). A mixture of results 
is apparent for populations of  Tragopogon  polyploids of separate 
origin; some populations appear to be interfertile, whereas some 
combinations are sterile ( Ownbey and McCollum, 1953 ; M. 
Chester et al., University of Oxford, unpublished data). This is 
clearly an area of research that requires more investigation. 

 The dynamic nature of polyploid genomes —    Polyploid ge-
nomes are highly dynamic, beyond anything that Stebbins and 
his contemporaries could have predicted. Not only are polyploids 
ubiquitous in nature, polyploidy itself has played a central role in 
shaping and restructuring plant genomes. Rapid changes post-
polyploid formation occur in genome structure, gene content, 
gene expression, and methylation and other epigenetic regulators 
( Fig. 4 ),   and we briefl y review these topics here. These features 
yield variation within polyploid species—in contrast to the pre-
diction of genetic uniformity—and contribute to evolutionary 
novelty and possibly long-term persistence of polyploid species. 

 Genome structure and chromosomal changes—  Molecular 
cytogenetic techniques allow for in-depth analysis of genome 
restructuring following polyploidy. For example, fl uorescent in 
situ hybridization (FISH) and genomic in situ hybridization 
(GISH) revealed that the allotetraploid  T. miscellus  has exten-
sive chromosomal variability ( Lim et al., 2008 ;  Chester et al., 
2012 ). None of the populations examined was fi xed for a par-
ticular karyotype, 76% of the individuals showed intergenomic 
translocations, and 69% exhibited aneuploidy for one or more 
chromosomes. Similar results were recently obtained for  T. mi-
rus  although compensated aneuploidy was not as frequent in 
this recent polyploid ( Chester et al., in press ). The extensive 
chromosomal variation still present after ca. 40 generations in 
 T. mirus  and  T. miscellus  suggests that substantial and prolonged 

following the KT mass extinction, a compelling hypothesis that 
requires more investigation ( Soltis and Burleigh, 2009 ). In an 
interesting twist, rather than searching for “advantages” of 
polyploids to explain their high frequency,  Meyers and Levin 
(2006 , p. 1198) hypothesized that the abundance of poly-
ploidy may be the result of “a simple ratcheting process that 
does not require evolutionary advantages due to the biological 
properties of organisms.” They show that the average ploidal 
level within a lineage can continue to increase to the levels seen 
today, “even if there are ecological or physiological disadvan-
tages to higher ploidy.” 

 Recent reanalyses of data for ferns and angiosperms revived 
the concept of polyploids as evolutionary dead-ends, indeed 
using this very word ( Mayrose et al., 2011 ; see also  Arrigo and 
Barker, 2012 ).  Mayrose et al. (2011)  argued that polyploids 
have higher extinction rates than diploids and are therefore of-
ten “dead-ends” that do not leave a legacy. Although it is likely 
that most new polyploids go extinct soon after formation, a 
number of computational, methodological, and statistical limi-
tations raise serious questions about the results of these studies 
and whether polyploids do in fact diversify less than diploids 
( Soltis et al., 2014 ). 

 Genetic variation in polyploids of multiple origin —    Specia-
tion via cladogenesis, regardless of mode (e.g., allopatric, sym-
patric, or saltational speciation; reviewed by  Grant [1981] , 
 Futuyma [1998] , and  Levin [2000] ), yields sister species that are 
(eventually) reciprocally monophyletic, even if viewed as para-
phyletic following species formation ( Rieseberg and Brouillet, 
1994 ). However, polyphyletic local origins of polyploid species 
have been recognized for over 60 yr (e.g.,  Ownbey, 1950 ) and are 
today considered the rule for polyploid species (e.g.,  Werth et al., 
1985a ,  b ). Interestingly, this view of recurrent polyploid species 
formation is not presented in any of the highly infl uential reviews 
of polyploidy from the mid-1900s, including those by  Stebbins 
(1950 ,  1971 ) and  Grant (1971 ,  1981 ). It is now well established, 
based on several lines of evidence, that individual polyploid 
plant, as well as animal, species typically form multiple times 
(reviewed by  Soltis and Soltis [1993 ,  1999 ,  2000] ). 

 It is puzzling that the concept of multiple origins of polyploid 
species did not gain more traction with Stebbins, who reviewed 
the ancestries of  Tragopogon mirus  and  T. miscellus  (Astera-
ceae) in his 1971 book ( Stebbins, 1971 ).  Ownbey (1950)  and 
 Ownbey and McCollum (1953)  reported that each of the newly 
formed allotetraploid  Tragopogon  species likely formed at least 
twice. Likewise, although  Grant (1981)  did not mention recur-
rent polyploidization, his own research on  Gilia  (Polemonia-
ceae) suggested that this process occurred ( Grant, 2002 ). Other 
examples of recurrent polyploidy from the premolecular litera-
ture include species of  Madia  (Asteraceae) ( Clausen et al., 1945 ), 
 Gutierrezia  (Asteraceae) ( Solbrig, 1971 ),  Mimulus  (Phryma-
ceae) ( Mia et al., 1964 ), and  Rubus  (Rosaceae) ( Rozanova, 
1938 ; see  Mavrodiev and Soltis, 2001 ). 

 Nearly all polyploids that have been investigated with genetic 
markers show evidence of recurrent formation, and the estimated 
number of independent polyploidization events typically in-
creases as data are gathered for additional populations and for 
increasingly sensitive markers. For example, autotetraploid 
 Heuchera grossulariifolia  (Saxifragaceae) may have fi ve ori-
gins ( Segraves et al., 1999 ). Allohexaploid  Draba norvegica  
(Brassicaceae) has formed at least 13 times in a small area of 
Scandinavia ( Brochmann et al., 1992 ).  Glycine tabacina  (Faba-
ceae), an allopolyploid, has formed at least six times in Australia 
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 Gossypium  parental chromosomes (~5–10 Ma), homeologous 
pairing is uncommon, resulting in relatively few exchanges be-
tween parental genomes ( Hendrix and Stewart, 2005 ;  Salmon et 
al., 2010 ;  Wang et al., 2010 ). Likewise, after as few as 150 yr 
following formation,  g enomic stability in allopolyploid  Spar-
tina anglica  has also been reported, perhaps because, as in cot-
ton, the parental genomes diverged several million years ago 
(~3 Ma) ( Ainouche et al., 2004 ,  2012 ). Allopolyploid  Carda-
mine fl exuosa  represents an interesting system, with recent in-
vestigation revealing synteny between homeologues (indicating 
low divergence between parental genomes, and an expectation 
of frequent homeologous exchange), though only one homeolo-
gous translocation appears to have occurred ( Mandáková et al., 
2014 ). 

 Natural and synthetic allopolyploid  Arabidopis suecica  and 
one of its progenitors, autotetraploid  A. arenosa , maintain so-
matic aneuploid mosaics (intraindividual variation in some, 

chromosomal instability might be common in natural popula-
tions after WGD ( Fig. 4 ). Extensive chromosomal variation, 
including translocations and compensated aneuploidy, was also 
observed in synthetic lines of the allotetraploid  Brassica napus  
(rapeseed;  Gaeta et al., 2007 ;  Xiong et al., 2011 ). However, 
such variation is not present in cultivated  B. napus , a result at-
tributed to selection for genomic stability through less fre-
quent homeologous pairing ( Udall et al., 2005 ;  Gaeta and 
Pires, 2010 ). Whereas selection seems to limit genome dynam-
ics and stabilize genome structure fairly soon after polyploid 
formation in  B. napus ,  Nicotiana  allopolyploids of various ages 
continue accumulating genomic rearrangements for much lon-
ger periods of time (~4.5 million years [Myr] since formation; 
 Lim et al., 2007 ). 

 In contrast, allopolyploid  Gossypium  has maintained a strik-
ingly stable genome since formation (approximately 1–2 my 
ago [Ma]) ( Liu et al., 2001 ). Due to the divergence between 

 Fig. 3. Contrasting viewpoints of polyploid formation and frequency (modifi ed from  Soltis and Soltis, 1999 ). The traditional view (top) considered 
polyploidy events rare and considered most polyploids to be of single origin with low genetic diversity. The current view (bottom) is one of multiple origins 
and high genetic diversity, of which only a subset is represented here. Colors represent parental genomes (homeologues), and patterns represent different 
alleles.   

 Fig. 4. A nonexhaustive example of potential sources of variation in an allopolyploid due to the merging of two parental genomes (homeologues, dif-
ferentiated by blue and orange). (A) Variation at the genomic level, including major changes to the karyotype, and nonadditive global methylation/transpos-
able element patterns. (B) Variation at the genetic level, comprising homeologue-specifi c loss/exchange/conversion and the repeatability (or lack thereof) 
of these across multiple lineages. (C) Variation at the transcriptomic level can take the form of changes to expression level (the volume of transcript pro-
duced by both homeologous gene copies), expression bias (higher expression of one homeologue), tissue-specifi c expression, and the interaction of regula-
tory elements between homeologous genomes.       

→
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Fig. 4. Continued.



SOLTIS ET AL.—POLYPLOIDY: STEBBINS REVISITED 1067July 2014]

crease tolerance of within-individual aneuploid mosaicism, as 
even the least tolerant tetraploid  A. thaliana  is more tolerant 
than its diploid progenitor. Synthetic  A. suecica  also undergoes 
rapid genomic stabilization of the nucleolar organizing and 5S 
rDNA regions through loss and/or homeologous rearrange-
ment; this has also been documented in natural accessions 

but not all, of the chromosome complement) in surprisingly 
high frequency (up to 20% and 34% in natural and synthetic 
plants, respectively), while the other progenitor, autotetraploid 
 A. thaliana , exhibits much lower frequencies (4%), with diploid 
 A. thaliana  having 0% ( Wright et al., 2009 ). Genome duplication 
in  Arabidopsis , both auto- and allopolyploidy, appears to in-

Fig. 4. Continued.
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 S. anglica , deviates slightly from the homoploid hybrid in ex-
pression by exhibiting more balanced parental expression lev-
els ( Chelaifa et al., 2010 ;  Ainouche et al., 2012 ). However, 
because expression patterns in  S. anglica  are similar to those of 
the homoploid hybrid, it appears that hybridization had a greater 
impact than genome doubling on gene expression. Such expres-
sion-level dominance has also been reported in polyploids in 
 Gossypium  and  Arabidopsis  ( Wang et al., 2006b ;  Chang et al., 
2010 ;  Flagel and Wendel, 2010 ;  Yoo et al., 2013 ), among oth-
ers. Whether expression biases occur as a result of hybridiza-
tion, polyploidization, or subsequent evolution over time, and if 
they are conserved across separate origins of polyploids, appears 
to vary among taxa. Moreover, the underlying mechanisms re-
sponsible for biased gene expression require further investiga-
tion (see  Yoo et al., 2013 ; M.-J. Yoo et al., Florida Museum of 
Natural History, unpublished manuscript). 

 In addition to gene silencing, genetic changes in polyploids 
may lead to functional diversifi cation of the homeologs, creat-
ing genes of new function (neofunctionalization) or a partition-
ing of gene function (subfunctionalization) (e.g.,  Ohno, 1970 ; 
 Lynch and Conery, 2000 ;  Lynch and Force, 2000 ;  Prince and 
Pickett, 2002 ). One of the most exciting areas of discovery in 
allopolyploids is the documentation of organ-specifi c subfunc-
tionalization of gene expression, a process that may be a major 
contributor to the success of polyploids. Subfunctionalization 
has been particularly well studied in cotton (e.g.,  Adams et al., 
2003 ,  2004 ;  Adams and Wendel, 2004 ,  2005 ). Based on studies 
of recent polyploids in  Tragopogon , it is also apparent that sub-
functionalization may begin to occur soon after polyploidiza-
tion ( Buggs et al., 2011 ). 

 Epigenetics —   Beyond genomic and genetic attributes of poly-
ploids, epigenetic properties may also contribute to variation 
and novelty in polyploids. Chromatin modifi cation, DNA meth-
ylation, and  cis - /trans -acting regulatory interactions may gen-
erate nonadditive expression patterns such as those described 
above ( Fig. 4 ). In fact, ecological and physiological novelty has 
been linked to epigenetic modifi cations in polyploids ( Osborn 
et al., 2003 ). The term “genomic shock” ( McClintock, 1984 ) refers 
to genomic stress of any kind, including hybridization and poly-
ploidization, prompting major genomic change and associated 
epigenetic effects. Investigations into the epigenetic effects in-
volved in polyploidy are still in their infancy, with most re-
search predominantly investigating methylation. 

 DNA methylation exhibits nonadditive patterns following both 
auto- and allopolyploidization ( Salmon et al., 2005 ;  Kraitshtein 
et al., 2010 ;  Zhao et al., 2011 ;  Lavania et al., 2012 ).  Salmon et al. 
(2005)  teased apart the role played by hybridization and ge-
nome duplication per se, indicating that genome merger and not 
polyploidy was largely responsible for nonadditive methylation 
patterns in  Spartina  (see also  Parisod et al., 2009 ). However, al-
terations to methylation patterns do not always accompany hy-
bridization or polyploidization, as  Liu et al. (2001)  reported for 
allopolyploid  Gossypium.  Likewise, divergent regulatory factors, 
particularly  trans  factors acting between parental genomes, also 
infl uence gene expression in allopolyploids and are capable of 
silencing, upregulating, or downregulating homeologous loci 
( Wang et al., 2006a ;  Shi et al., 2012 ; and reviewed in  Buggs et al., 
2014 ). For example, in the allotetraploid  Arabidopsis suecica , a 
gene ( FRI ) from the  A. arenosa  parental subgenome downregu-
lates the  A. thaliana  copy of another gene ( FLC ) in the fl ower-
ing time pathway to yield a much later fl owering time in the 
polyploid than in either parent. Studies of such well-described 

( Pontes et al., 2004 ).  Arabidopsis  neopolyploid lines ( A. thali-
ana  [2 x ]  ×   A. suecica  [4 x ]) not only display aneuploidy in so-
matic tissue but also give rise to aneuploid offspring (similar to 
 Brassica,  above); aneuploidy was also found to correlate with 
phenotypic change ( Matsushita et al., 2012 ). 

 These chromosomal analyses demonstrate that plant species 
respond differently to polyploidy. Species of  Tragopogon , 
 Brassica , and  Nicotiana  exhibit extensive structural variation, 
whereas polyploids in  Gossypium ,  Spartina , and  Cardamine  
have undergone little to no genome restructuring. This variation 
in the extent of chromosomal variation indicates that more 
work is needed before we can understand why some polyploid 
genomes rearrange and others do not. 

 Gene loss—  Upon formation, allopolyploids have duplicate 
genes at all loci, and these extra loci may be maintained, modi-
fi ed, or lost, with the latter comprising both true physical loss of 
DNA and homeologous gene conversions ( Fig. 4 ;  Wang and 
Paterson, 2011 ). Losses of one duplicate gene copy have oc-
curred over short time scales, in both synthetic and natural al-
lopolyploids ( Kashkush et al., 2002   ;  Nie et al., 2008 ;  Anssour 
et al., 2009 ;  Buggs et al., 2010 ;  Koh et al., 2010 ). Gene loss can 
occur immediately following polyploidization, as demonstrated 
by  Nie et al. (2008)  in S 1  synthetic hexaploid  Triticum . In other 
cases, however, gene losses only occur in later generations fol-
lowing WGD ( Song et al., 1995 ;  Buggs et al., 2009 ). In young 
polyploids, these losses appear to occur frequently, as was 
shown in  Tragopogon miscellus  with high interpopulation and 
interindividual variation displayed with respect to homeologus 
losses ( Tate et al., 2009 ;  Buggs et al., 2012 ). That is not to say 
that all gene loss is random, however. Repeated patterns of ho-
meolog loss and retention have been reported across multiple 
origins of both  T. mirus  and  T. miscellus  ( Tate et al., 2006 , 
 2009 ;  Koh et al., 2010 ;  Buggs et al., 2012 ). Furthermore, in  T. 
miscellus , loci belonging to certain gene ontology (GO) catego-
ries were disproportionately more likely to be lost, and patterns 
of loss and retention after 40 generations in this young poly-
ploid were similar to those discovered for much older (40 Myr) 
WGDs in Asteraceae ( Barker et al., 2008 ). Over longer evolu-
tionary time, patterns of duplicate gene retention and loss ap-
pear to be related to gene function (e.g.,  Paterson et al., 2006 ; 
 Barker et al., 2008 ;  Severin et al., 2011 ;  De Smet et al., 2013 ). 
Taken together, given enough time, many of the seemingly sto-
chastic processes associated with neopolyploids eventually 
converge on a pattern of single vs. duplicate gene retention. 

 Changes in gene expression—  In addition to structural changes 
to the genome and changes in gene content, recent research has 
shown plasticity and transgression in allopolyploid gene ex-
pression patterns ( Fig. 4 ), indicating that polyploids are not the 
sum of their parental genes. Instead, many polyploids deviate 
from expectations in which parental gene expression patterns 
are combined in the allopolyploid, i.e., midparent expression 
levels. Homeologous silencing and nonadditive up- or down-
regulation may explain these deviations, although these changes 
are not necessarily consistent across the genome and are not 
always associated with chromosome doubling per se ( Hegarty 
et al., 2005 ,  2006 ,  2012 ;  Buggs et al., 2009 ,  2011 ;  Chelaifa 
et al., 2010 ;  Ainouche et al., 2012 ). For example,  Spartina 
townsendii , a homoploid hybrid of  S. maritima  and  S. alternifl ora  
(themselves both polyploid), exhibits gene expression patterns 
similar to those of  S. alternifl ora  ( Chelaifa et al., 2010 ). The 
natural allopolyploid derivative of  S. maritima  and  S. alternifl ora , 
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 Insight into the possible high frequency of autopolyploidy, as 
well as the number of unnamed polyploid species, has been pro-
vided using the California fl ora as a database (J. Ramsey and 
B. C. Husband, personal communication; reviewed by  Soltis 
et al. [2007] ). Of 2647 species from 346 genera in 62 angiosperm 
families, 334 species (13%) have multiple cytotypes (clear 3 x , 4 x , 
or higher multiples of the base chromosome number for a given 
genus). Most of these cytotypes are presumed to be autopoly-
ploids, but all would require careful study to clarify their origin. 
Nonetheless, we will assume for purposes of this example that 
these are autopolyploids. Because some of these 334 chromo-
somally polymorphic taxonomic species actually have more than 
two cytotypes, if each cytotype represented a distinct species, the 
total number of unrecognized species is actually 483. Even if 
only 50% are autopolyploids, the point is clear—we have grossly 
underestimated the importance of autopolyploids in nature (see 
 Soltis et al., 2007 ). Furthermore, this or any estimation of the oc-
currence of multiple cytotypes from the literature (e.g., from any 
regional fl ora) could be a low minimum estimate. 

 The proposed reasons for the success of autopolyploids 
are several and involve tetrasomic (in an autotetraploid) or 
higher-level polysomic inheritance ( Soltis and Rieseberg, 
1986 ;  Soltis and Soltis, 1989a ). This results in increased het-
erozygosity compared to diploids (see  Moody et al., 1993 ) 
and up to four different alleles per locus in a single autotet-
raploid plant ( Soltis and Soltis, 1993 ).  Parisod et al. (2010)  
note that although few autopolyploids have been examined 
in any detail, autopolyploids do not seem to experience ma-
jor genome restructuring or major changes of gene expres-
sion during the fi rst generations following genome doubling, 
However, over longer periods of evolutionary time, these pro-
cesses are likely to become more important. They hypothesize 
that polysomic inheritance provides a short-term evolution-
ary advantage for an autopolyploid compared to its diploid 
progenitor. Recently, computer simulations indicted that au-
topolyploids may also be capable of escaping polysomic in-
heritance and regaining disomic inheritance, opening the door 
to neo- and subfunctionalization ( Le Comber et al., 2010 ; see 
review above). 

 Biogeographic and niche modeling analyses have begun to 
investigate the possible role of niche divergence in the estab-
lishment and persistence of both autopolyploids and allopoly-
ploids. Although establishment of an autopolyploid may be 
particularly susceptible to minority cytotype exclusion ( Levin, 
1975 ), many autopolyploids have nonetheless become estab-
lished and persist, perhaps due to early divergence in habitat 
requirements. Few studies have empirically shown autopoly-
ploids to occupy novel niche space following formation. One of 
the best examples of niche divergence promoting the establish-
ment of a newly originated autopolyploid is in  Achillea   (Ramsey, 
2011 ; see  Levin, 2011 ); this study provides evidence of a neo-
hexaploid being ecologically divergent from its tetraploid par-
ent at the time of formation. Although the above work stands as 
an example of the ideal method for demonstrating niche diver-
gence, it can be exceedingly diffi cult and time-consuming. 
Given the large number of polyploids in nature, ecological niche 
modeling using readily available locality data from herbarium 
records and other sources can offer broad insights into patterns 
of polyploidy and novelty. A new literature is emerging on the 
distribution of polyploids and their diploid progenitors. Here 
we review the handful of autopolyploids that have been exam-
ined with this approach (niche differentiation in allopolyploids 
is covered in a later section). 

pathways make it clear that epigenetic factors may control ex-
pression patterns in polyploids and can potentially serve as dy-
namic mechanisms contributing to polyploid evolution. 

 Autopolyploidy is common—  Allopolyploidy is still consid-
ered to be more common than autopolyploidy (e.g.,  Soltis and 
Soltis, 1993 ;  Ramsey and Schemske, 1998 ;  Soltis et al., 2004 ; 
 Tate et al., 2005 ;  Wendel and Doyle, 2005 ), but increasing 
importance is given to autopolyploidy, although we likely 
continue to underestimate both the prevalence and role of auto-
polyploidy in ecology and evolution. The perceived rarity of 
natural autopolyploids historically was attributed in part to ste-
rility resulting from irregular chromosome pairing at meiosis. 
Because every chromosome is represented four times in an au-
totetraploid, multivalent formation can lead to reduced fertility. 
However, chromosome pairing in even-numbered polyploids 
may be stable and does not necessarily interfere with the abil-
ity of a polyploid to reproduce. Chromosome pairing in wheat 
is under simple genetic control ( Sears, 1976 ). Several genes 
( Pairing homoeologous ,  Ph  genes) control chromosome pair-
ing in wheat, but the strongest effect is associated with a gene 
on the long arm of chromosome 5B,  Phl  ( Ji and Langridge, 
1990 ;  Griffi ths et al., 2006 ). Rapid sequence elimination in 
newly formed wheat polyploids ( Shaked et al., 2001 ) suggests 
that differential elimination of genome-specifi c sequences may 
facilitate homologous chromosome pairing. Simulations also 
suggest mechanisms for autopolyploids that may also facilitate 
a move from multivalent formation and polysomic inheritance 
to disomic inheritance ( Le Comber et al., 2010 ). 

 Because a major criterion for recognition of an autopolyploid 
has been polysomic inheritance (e.g.,  Muller, 1914 ;  Haldane, 
1930 ), detection of autopolyploids was long hampered by lack 
of easy tools for assessing genetic diversity and inheritance pat-
terns. Inference of disomic vs. polysomic inheritance from al-
lozyme (see  Tate et al., 2005 ) and other genetic markers (e.g., 
microsatellites;  Landergott et al., 2006 ;  Stift et al., 2008 ) revo-
lutionized the study of autopolyploidy. Based on allozyme elec-
trophoresis, studies of diverse plants revealed a number of 
previously unrecognized autopolyploids (reviewed by  Soltis 
and Soltis [1993 ,  1999] ; and  Tate et al. [2005] ), including  Tol-
miea menziesii  (Saxifragaceae),  Heuchera micrantha  and  H. 
grossulariifolia  (Saxifragaceae),  Turnera ulmifolia  var.  elegans  
and var.  intermedia  (Turneraceae), and  Allium nevii  (Allia-
ceae). Other genetic markers, including microsatellites, have 
revealed many additional examples. We have searched the lit-
erature from the past 25 yr and provide an updated list of pos-
sible autopolyploids ( Table 1 ).   

 Numerous studies suggest that autopolyloids are frequently 
generated, but may either quickly be lost or persist undetected. 
For example,  Ramsey and Schemske (1998)  estimated that the 
rate of autotetraploid formation is high—comparable to the 
genic mutation rate. Although most certainly do not survive, 
even a small success rate ultimately yields a high number of 
autopolyploid species. Certainly most of the cytotypes recog-
nized as intraspecifi c chromosomal series are autopolyploids, 
based on morphological similarity among cytotypes—many 
may be unrecognized distinct lineages (e.g., species). Further-
more, autopolyploidy may be more prevalent in some plant 
groups than others. For example, autopolyploids have often 
been documented in Saxifragaceae ( Soltis and Soltis, 1993 ) and 
Cactaceae (see  Hamrick et al., 2002 ;  Arakaki et al., 2007 ;  Majure 
et al., 2012 ). Most known polyploids in mosses appear to be 
autopolyploids ( Wyatt et al., 1989 ;  Husband et al., 2013 ). 
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northern Scotland) and octoploid ( P. scandinavica  [=  P. fari-
nosa   ×   P. scotica ], mostly Norway). Although  P. scotica  and  P. 
scandinavica  are considered allopolyploids, they are ulti-
mately derived from only  P. farinosa , suggesting they may ac-
tually be complex autopolyploids. In this complex, niche 
breadth has decreased with each round of polyploidization. To-
gether, these studies suggest that in some cases, autopolyploid 
formation is associated with a shift in habitat requirements, but 
other times, no such shift has occurred. 

 Ecology—   Stebbins (1950)  considered that successful establish-
ment of a polyploid required ecological divergence from its par-
ents. Studies to date on allopolyploids provide mixed results (niche 
differentiation in autopolyploids was discussed above). Some al-
lopolyploids occupy a niche intermediate to their parents, others 
inhabit areas similar to one parent, and some occupy a unique 
niche relative to the parents (e.g.,  Martin and Husband, 2009 ;  The-
odoridis et al., 2013 ;  Glennon et al., 2014 ;  Harbert et al., 2014 ; B. 
Marchant et al., University of Florida, unpublished data; see  Soltis 
et al., 2014 ). However, unlike  Ramsey’s (2011)  results for auto-
polyploid  Achillea , there is currently no equivalent published 

 Diploid and autotetraploid cytotypes of  Heuchera cylindrica  
inhabit separate ranges but were found not to have diverged in 
niche requirements ( Godsoe et al., 2013 ). Conversely, in  Clay-
tonia , three species, each comprising a cryptic ploidal series 
including both auto- and allopolyploids, were shown to have 
undergone divergence in niche space between the diploids and 
polyploids, though tetraploid and hexaploid niches were found 
in some cases to overlap with one another ( McIntyre, 2012 ). 
 Tolmiea menziesii , an autotetraploid, appears to be both eco-
logically and geographically distinct from its progenitor,  T. 
diplomenziesii  ( Soltis, 1984 ; C. J. Visger et al., unpublished 
data). In  Houstonia , divergence between diploid and tetra-
ploid cytotypes was found in  H. longifolia , but lack of diver-
gence was observed for  H. purpurea  ( Glennon et al., 2012 ). 
In  Primula  sect.  Aleuritia , three polyploid species—most likely 
autopolyploids—and their diploid progenitor,  P. farinosa , all 
occupy distinct ranges and ecological niches ( Theodoridis 
et al., 2013 ). The greatest similarity in distribution is between 
 P. farinosa  and the autotetraploid,  P. halleri , with disjunct dis-
tributions for the hexaploid ( P. scotica  [=  P. farinosa   ×   P. halleri ], 

  TABLE  1. Presently recognized autopolyploids and the type of evidence used to support their mode of origin. Included are the results of previous such 
tables compiled by  Soltis and Soltis (1993) ,  Soltis et al. (2007) ,  Parisod et al. (2009) , and  Arnold et al. (2012) . 

Taxon Ploidy Type of evidence Source

 Acacia nilotica 4 x segregation pattern  Mandal et al., 1994 
 Actinidia chinensis  var.  deliciosa 4 x segregation pattern and meiotic associations  Mertten et al., 2012 ;  Huang et al., 1997 
 Adansonia digitata 4 x segregation pattern  Larsen et al., 2009 
 Allium nevii 4 x segregation pattern  Rieseberg and Doyle, 1989 
 Arabidopsis lyrata 4 x segregation pattern  Mable et al., 2004 
 Aster amellus 6 x morphology and lack of fi xed heterozygosity  Mándaková and Münzbergová, 2008 
 Biscutella laevigata 4 x segregation pattern  Tremetsberger et al., 2002 
 Centaurea jacea 4 x segregation pattern  Hardy et al., 2001 
 Chamerion angustifolium 4 x segregation pattern  Husband and Schemske, 1997 
 Chrysanthemum morifolium 6 x morphological segregation  Langton, 1980 
 Dactylis glomerata 4 x segregation pattern  Lumaret, 1987 
 Dahlia variabilis 4 x morphology  Lawrence, 1931 
 Dioscorea alata 4 x segregation pattern  Nemorin et al., 2012 
 Dioscorea trifi da 4 x segregation patterns  Bousalem et al., 2006 
 Galax urceolata 4x chemistry and lack of fi xed heterozygosity  Soltis et al., 1983 ;  Epes and Soltis, 1984 
 Galium anisophyllum 4 x morphology  Ehrendorfer, 1965 
 Haplopappus spinulosus 4 x segregation pattern  Hauber, 1986 
 Heuchera cylindrica 4 x segregation pattern R. A. Ruppel and K. A. Segraves, unpublished data
 Heuchera grossulariifolia 4 x segregation pattern  Wolf et al., 1989 
 Heuchera micrantha 4 x segregation pattern  Soltis and Soltis, 1989b 
 Lotus corniculatus 4 x segregation pattern  Fjellstrom et al., 2001 
 Lythrum salicaria 4 x morphological segregation  Fisher, 1943 ;  Fisher, 1949 
 Maclura pomifera 4 x segregation pattern  Laushman et al., 1996 
 Medicago falcata 4 x morphology and segregation pattern  Quiros, 1982 ;  Stanford, 1951 
 Medicago sativa 4 x segregation pattern  Quiros, 1982 ;  Stanford, 1951 
 Pachycereus pringlei 4 x segregation pattern  Murawski et al., 1994 
 Panicum virgatum 8 x segregation pattern  Okada et al., 2011 
 Paspalum notatum 4 x segregation pattern  Stein et al., 2004 
 Paspalum simplex 4 x segregation pattern  Pupilli et al., 1997 
 Phleum pratense 6 x morphology  Nordenskiold, 1953 
 Prunus spinosa 4 x segregation pattern  Leinemann, 2000 
 Rorippa amphibia 4 x segregation pattern  Stift et al., 2008 
 Rorippa sylvestris 4 x segregation pattern  Stift et al., 2008 
 Rutidosis leptorrhynchoides 4 x segregation pattern  Brown and Young, 2000 
 Solanum tuberosum 4 x morphology and segregation pattern  Howard, 1970 ;  Martinez-Zapater and Oliver, 1984 ; 

 Quiros and McHale, 1985 
 Thymus praecox 4 x segregation pattern  Landergott et al., 2006 
 Tolmiea menziesii 4 x segregation pattern  Soltis and Soltis, 1988 
 Turnera sidoides  complex 2 x –8 x meiotic associations  Kovalsky and Solis Neffa, 2012 
 Turnera ulmifolia  var.  elegans 4 x segregation pattern  Shore and Barrett, 1987 ;  Shore, 1991 
 Turnera ulmifolia  var.  intermedia 4 x morphology and segregation pattern  Shore and Barrett, 1987 ;  Shore, 1991 
 Vaccinium corymbosum 4 x segregation pattern  Krebs and Hancock, 1989 
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reproductively isolated from the diploids by geographic distance, 
fl owering asynchrony, pollinator fi delity, self pollination, and ga-
metic selection, with geographic isolation (41%) and pollinator 
fi delity (44%) representing the greatest proportions of these mech-
anisms. They also proposed that the emphasis previously placed on 
postzygotic factors, such as triploid sterility/inviability, may actu-
ally be secondary to prezygotic isolating mechanisms, but this as-
sumes suffi cient time for prezygotic barriers to evolve. 

 Morphological changes resulting from polyploidization can 
also have an effect on the reproductive biology of a neopoly-
ploid species.  Segraves and Thompson (1999)  found that natu-
ral autopolyploid populations of  Heuchera grossulariifolia  
(Saxifragaceae) not only have larger fl owers than the diploid 
populations, but also different fl oral shapes and fl owering 
times. The suites of pollinators visiting sympatric diploid and 
tetraploid plants differed proportionally when the fl owering 
time of the two cytotypes was synchronous. Moreover, the in-
dependently generated autotetraploid populations differed in a 
number of fl oral characters ( Segraves and Thompson, 1999 ). 

 NEW DIRECTIONS 

 Plant biologists and plant geneticists have now taken polyploid 
research into new directions that could not have been anticipated 
even 20 yr ago, let alone during the time of Stebbins. Modern re-
search into the consequences of polyploidy now includes studies of 
the proteome, microRNAs, and the impact of alternative splicing 
(AS). We cover several of these topics below and point readers to 
relevant reviews. Following the report of  Levin (1983)  and others, 
perhaps the most important conclusion from such ongoing studies 
is that polyploidy could propel a population into a new adaptive 
sphere, given the myriad changes that accompany genome dou-
bling and lead to novelty (e.g.,  Soltis et al., 2014 ). 

 Despite great progress in documenting the genomic and tran-
scriptomic changes in polyploids relative to their diploid par-
ents, we know little about the impact of WGD on the proteome 
(e.g.,  Albertin et al., 2006 ,  2007 ;  Gancel et al., 2006 ;  Carpentier 
et al., 2011 ;  Hu et al., 2011 ,  2013 ;  Kong et al., 2011 ;  Koh et al., 
2012 ;  Ng et al., 2012 ). Given that the functional states of pro-
teins in a proteome directly affect molecular and biochemical 
events in cells that determine phenotype, investigating how 
changes in gene expression profi les and AS events relate to 
protein-level changes is essential for understanding the molecu-
lar and evolutionary consequences of polyploidy, including 
molecular, biochemical, and physiological mechanisms that ul-
timately result in evolutionary change. Despite only a handful 
of proteomic studies of polyploids and their parents, some have 
revealed that the proteome of the polyploid does not always 
match the results predicted from the transcriptome alone; fur-
thermore, novel proteins not found in either parent may be pro-
duced. These data point to the complexity of cellular-level plant 
processes, as well as the need for additional comparative analy-
ses of the proteomes of polyploids and their diploid progenitor(s) 
(e.g.,  Gancel et al., 2006 ;  Hu et al., 2011 ,  2013 ;  Kong et al., 
2011 ;  Koh et al., 2012 ;  Ng et al., 2012 ). 

 Although the important role of AS is now appreciated in 
eukaryotes, including plants ( Reddy et al., 2012 ,  2013 ;  Syed 
et al., 2012 ), few studies have analyzed the impact of poly-
ploidy on AS (M. J. Yoo et al., Florida Museum of Natural 
History, unpublished manuscript). Fractionation, neofunc-
tionalization ( Ohno, 1970 ), and subfunctionalization ( Hughes, 
1994 ;  Force et al., 1999 ) are all important processes that occur 

evidence of a newly formed allopolyploid species being ecologi-
cally divergent from its parents (see  Abbott et al., 2013 ). 

 Genome duplication has shaped not only speciation, but also 
the phenotypic and ecological diversity of plants, altering habitat 
use, life histories, competitive abilities, interactions with herbivores 
and pathogens, and pollinator-mediated reproduction ( Thompson 
et al., 2004 ;  Oswald and Nuismer, 2007 ;  Thompson and Merg, 
2008 ;  Arvanitis et al., 2010 ;  Boalt et al., 2010 ;  Ramsey, 2011 ; 
 Martin and Husband, 2013 ;  Strong and Ayres, 2013 ; Ramsey and 
Ramsey, 2014).  Segraves and Thompson (1999)  found that natu-
ral autopolyploid populations of  Heuchera grossulariifolia  (Sax-
ifragaceae) differ in fl oral features and fl owering time from 
diploid populations and that these differences are associated with 
different suites of pollinators (relevant to isolating mechanisms, 
below). Similarly,  Boalt et al. (2010)  found an association be-
tween ploidy and herbivory tolerance in  Cardamine . 

 Physiology—   Stebbins (1971)  proposed that physiological 
changes associated with polyploidy may be key to the success of 
these plants and occupation of new habitats, and  Levin (1983)  
eloquently elaborated on this suggestion. As fi rst proposed in sev-
eral now-classic papers, many physiological and developmental 
processes are affected by increases in ploidy, including gas ex-
change rates, gene activity, hormone levels, photosynthetic rates, 
and water balance ( Levin, 1983 ,  2002 ;  Warner and Edwards, 
1993 ). Although more physiological analyses are needed, recent 
physiological data clearly indicate that diverse changes accom-
pany genome doubling, and these could be benefi cial to the new 
polyploid species (e.g.,  Coate et al., 2012 ,  2013 ;  Wang et al., 
2013 ). For example, polyploidy has affected the response to salt 
stress in polyploid  Robinia  ( Wang et al., 2013 ) and photosyn-
thetic response in polyploid  Glycine  ( Coate et al., 2012 ). 

 Reproduction and isolating mechanisms—  The establishment 
and persistence of a newly formed polyploid are clearly crucial 
for the success or failure of a polyploid species, and  Stebbins 
(1950)  addressed these processes, particularly in light of isolating 
mechanisms between diploids and polyploids. It is now clear that 
a number of features may contribute to the reproductive success 
of a neopolyploid and therefore its establishment and persistence. 
These include perenniality or a propensity toward apomixis or 
self-compatibility. Additionally, changes in morphological fea-
tures (namely in fl oral characteristics) following polyploidization 
may reinforce the postzygotic reproductive barriers that prevent 
mating between cytotypes (e.g.,  Tate et al., 2005 ). 

 A new polyploid may be reproductively isolated from its 
diploid progenitors, not only as a result of its multiplied chro-
mosome number, but also because the physiological and mor-
phological changes that follow or accompany polyploidization 
may alter its reproductive biology. Reproductive barriers may 
be prezygotic (e.g., geographic isolation, fl owering phenology 
differences, pollinator consistency) or postzygotic (e.g., trip-
loid hybrid inviability, inbreeding depression). A breakdown of 
genetic incompatibility systems often accompanies polyploid 
formation ( Richards, 1997 ) and leads to self-fertilization, which 
can isolate a new polyploid from its diploid parent(s) and pro-
mote establishment of the new polyploid. This change occurs in 
species with a single-locus gametophytic self-incompatibility 
(GSI) system, but is not known to occur in species with multi-
genic GSI or sporophytic self-incompatibility (SSI) systems ( de 
Nettancourt, 2001 ;  Ramsey and Schemske, 2002 ). 

  Husband and Sabara (2003)  showed that autotetraploid in-
dividuals of  Chamerion angustifolium  (Onagraceae) were 
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a visionary—but the result is the same, with polyploidy once again 
a lively topic of research and discussion, with facets ranging from 
the subgenomic to ecosystem levels. Indeed, given recent and cur-
rent research avenues, it appears that Stebbins’s contributions to 
concepts such as ancient polyploidy and ecological niches are as 
relevant today as they were over 60 yr ago. 

 Ancient WGD is no longer a startling outcome of genome 
sequencing and assembly, but the number of inferred WGDs 
may be. Fortunately, as the number of sequenced plant genomes 
continues to increase, inferences of genome duplication, syn-
teny, and fractionation become increasingly feasible. For ex-
ample, comparison of the genome of  Amborella trichopoda  (the 
sister to all other extant angiosperms) with a set of eudicots 
demonstrated syntenic relationships maintained over vast phy-
logenetic distances and provided further evidence for two 
WGDs early in eudicot evolution (  Amborella  Genome Project, 
2013 ). Ancient polyploidy—and its role in both genome evolu-
tion and organismal diversifi cation—will continue to be an im-
portant topic for many years to come (Jiao and Paterson, 2014). 

 As Stebbins noted repeatedly (including  Stebbins, 1985 ; 
 Bayer et al., 1991 ), polyploids are most successful when they 
originate from genetically different (and therefore typically 
geographically separated) parents. Despite scores of studies de-
bating whether polyploids have broader ecological amplitudes 
than their parental species, and the role of polyploidy in post-
glacial recolonization, relatively few studies are actually based 
on data. The application of ecological niche modeling, as de-
scribed above for autopolyploids and their diploid progenitors 
as well as for allopolyploids and the origin of ecological nov-
elty ( Soltis et al., 2014 ), provides new landscape perspectives 
on an old problem, using locality data that, in some cases, have 
been under our noses for centuries. Digitization of herbarium 
records and their deposition in GBIF, iDigBio, or BISON are 
providing immense new sources of data for exploring the 
distributions of polyploids and for formulating ecological 
hypotheses. 

 As we celebrate a century of the  American Journal of Botany , 
we also celebrate the unparalleled contributions, many of which 
appeared in  AJB , of Ledyard Stebbins to our understanding of 
polyploidy and plant evolution. We hope that this review will 
stimulate new research on unanswered questions raised by Steb-
bins, his predecessors and contemporaries, and those who have 
come since, and on new topics unimaginable even a decade ago. 
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following polyploidy, but the combined impact of these pro-
cesses coupled with AS following WGD is unknown. Of the 
few studies conducted on this topic, some suggest that there is 
little or no correlation between AS and gene and genome du-
plication ( Talavera et al., 2007 ;  Roux and Robinson-Rechavi, 
2011 ). Others, however, suggested a negative correlation be-
tween AS and duplication, and that alternatively spliced iso-
forms between duplicates may differ dramatically ( Su et al., 
2006 ;  Chen et al., 2011 ).  Zhang et al. (2009)  found that exonic 
splicing enhancers and exonic splicing silencers rapidly di-
verge after gene duplication, while  Santos et al. (2011)  pre-
sented evidence of isoform loss and neofunctionalization after 
duplication. These fi ndings agree with the hypothesis that gene 
duplication at least may impact AS. But less is known about ge-
nome-wide duplication and AS.  Zhang et al. (2010)  provided evi-
dence of divergence of AS patterns following gene and genome 
duplication in  Arabidopsis ; interestingly, some of the differences 
reported occur in an organ- or stress-specifi c manner. Hence, an 
important new set of questions arises: Given that AS increases 
proteomic fl exibility, are both parental AS profi les maintained in 
an allopolyploid? Does one parental AS pattern dominate? How 
much novel AS occurs following genome doubling? 

 Still another important new area of research involves the in-
terplay of many of the genomic phenomena discussed above. 
As recently reviewed, an important requirement of polyploids 
is the need to retain dosage balance following gene duplication 
(Conant et al., 2014). These authors argue that elucidating these 
dosage effects represents “one aspect of an emerging pluralistic 
framework” in the study of polyploid evolution. 

 CONCLUSIONS 

 The fi rst half of the 20th century witnessed tremendous advances 
in the collective understanding of plant genetics and of the role of 
genetics in evolution. Within a few short decades, the discovery of 
chromosomes, the “rediscovery” of Mendel’s work, and the inte-
gration of genetics, systematics, and population biology of plants 
revolutionized perspectives on plant evolution. Despite outstand-
ing, vital contributions by a host of excellent plant biologists, the 
Modern Synthesis as applied to plants was both largely developed 
and championed by Ledyard Stebbins ( Smocovitis, 1997 ,  2001 ), 
and in no specifi c area was his infl uence greater than in the study of 
polyploidy. As should be clear from this review,  Stebbins (1950)  
shaped the community’s thinking on polyploidy (and many other 
topics) for nearly half a century, and in many aspects, still has valu-
able gems to impart. Stebbins himself was revolutionary, pulling 
together disparate fi elds to provide a cohesive view of polyploid 
evolution. Stebbinsian legend has it that he specifi cally tackled the 
polyploidy question in the 1920s because it was a nearly empty 
niche and he thought he could make a name for himself! 

 Just as plants undergo cycles of polyploidization and diploidiza-
tion (e.g.,  Haufl er, 1987 ,  2002 ), scientifi c topics move in and out of 
popularity, and so it has been with polyploidy. Despite tremendous 
research activity for several decades, interest in polyploidy, at least 
in the United States, waned during the last 20 yr of the 1900s. Per-
haps ironically, approximately 100 yr after the discovery of chro-
mosomes, genomic tools began to reveal the complex, duplicated 
nature of plant genomes—even small, apparently simple genomes 
like that of  Arabidopsis thaliana  ( Vision et al., 2000 ;  Bowers et al., 
2003 ). The sudden ability to gather genomic and transcriptomic 
data has revolutionized the study of polyploidy once again—this 
time through a technical revolution rather than through the lens of 
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