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Testing the Hypothesis of Common Ancestry
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The hypothesis that all life on earth traces back to a single common ancestor is a fundamental
postulate in modern evolutionary theory. Yet, despite its widespread acceptance in biology,
there has been comparatively little attention to formally testing this “hypothesis of common
ancestry”. We review and critically examine some arguments that have been proposed in
support of this hypothesis. We then describe some theoretical results that suggest the
hypothesis may be intrinsically difficult to test. We conclude by suggesting an approach to the
problem based on the Aikaike information criterion.
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1. Introduction

It is a central tenet of modern evolutionary
theory that all living things now on earth trace
back to a single common ancestor. Not only do
plants share a common ancestor and animals do
the same; in addition, plants and animals derive
from a common progenitor. This proposition,
which we call the Hypothesis of Common
Ancestry, does not assert that life on earth arose
just once. Multiple start-ups are allowed, if all of
them, except one, went extinct. It also does not
exclude the possibility that some genetic material
has been exchanged between primitive ancestral
species.

This proposition is central because it is pre-
supposed so widely in evolutionary research.
When biologists attempt to reconstruct the
phylogenetic relationships that link a set of
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species, they usually assume that the taxa under
study are genealogically related. Whether one
uses cladistic parsimony, distance measures, or
maximum likelihood methods, the typical ques-
tion is which tree is the best one, not whether
there is a tree in the first place.!| The same pre-
supposition is at work in the pattern of reason-
ing that biologists often use to develop adaptive
hypotheses. When biologists consider the

I In saying that parsimony pre-supposes the existence of
a common ancestor, and so does not permit a test of that
hypothesis, we are claiming that the following inference is
invalid. In that argument, being alive (L) is treated as a
derived character and non-life (N) as ancestral, this on the
grounds that life arose from nonlife. One then uses
parsimony to conclude that the tree in Fig. 1(a) is more
plausible than the tree in Fig. 1(b). The problem with this
line of reasoning is that it pre-supposes that non-living
things form a genealogical tree, subject to descent with
modification. Although this may be true of some non-living
things, it surely is not true of all. If reticulate genealogies
produced by hybridization render parsimony inapplicable
in the case of organisms, surely this causal pattern (wherein
effects have more than one direct cause) undermines the
applicability of parsimony in the domain of non-living
things as well.

© 2002 Elsevier Science Ltd. All rights reserved.
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possible adaptive reasons why a species exhibits
some trait, they usually think about the trait as
evolving against a background of biological
features already in place. They infer what that
ancestral condition was by assuming that there
is a phylogenetic tree that unites the species of
interest with other species. Traits of sister groups
are then ‘“read back” into the past (using
parsimony or some other method of inference),
thereby providing an estimate of the trait values
of ancestors.

In view of the importance within evolutionary
biology of the Hypothesis of Common Ancestry,
it is worth reviewing what evidence there is that
the hypothesis is true. In this paper, we assess the
arguments that have been made in the biological
literature and discuss a methodology that has
not been applied to this problem before.

2. Previous Arguments and Analyses

Perhaps the most frequently cited argument
for a single common ancestor is Crick’s (1968)
idea that the genetic code is a “frozen accident”,
meaning that the pattern by which nucleotide
triplets code amino acids is functionally arbi-
trary. There is no adaptive reason why UUU
should code for phenylalanine (which it does)
rather than isoleucine (which it does not). Given
this hypothesis, the (near) universality of the
genetic code among the earth’s organisms
provides strong evidence that all those organisms
trace back to a common ancestor. If the
Hypothesis of Common Ancestry were true, we
would expect the code to be universal; if lineages
arose separately, we would expect them to
exhibit different codes. The crucial idea in this
argument is that different codes constitute

different adaptive peaks between which there
are deep valleys. It is not essential that all peaks
have the same height. This is fortunate, since it
has been argued that the code we now observe is
optimal (Freeland et al., 2000). What is funda-
mental is the idea of stabilizing selection—once
an organism deploys a given code, selection will
tend to retain that trait in the organism’s
descendants.

Although we do not object to Crick’s argu-
ment as far as it goes, we think it is worthwhile
to consider whether other lines of evidence
support the Hypothesis of Common Ancestry.
For one thing, Crick’s argument is based on
a single shared trait; although that trait has
obvious biological importance, it would be
interesting to see if other traits can be brought
to bear on the question. Few biologists would be
content to use a single trait in reconstructing the
best phylogenetic tree. Why, then, is a single trait
sufficient to settle the question about common
ancestry? In fact, Crick’s argument does not
stand on its own; the same form of argument can
be applied to other universals of biochemistry.
For example, the fact that all amino acids found
in proteins are left-handed likewise can be
viewed as a frozen accident, since right-handed
amino acids evidently would work just as well.
These features, taken together, provide a more
powerful argument for common ancestry than
any one of them does singly.

Another feature of Crick’s argument that
leads us to think that the question is worth
pursuing further is the fact that the argument is
not quantitative. It asserts that there are multiple
adaptive peaks with deep valleys between, but
how deep are those valleys? We know from
evolutionary theory that valleys can be tra-
versed. It would be worthwhile to develop
a quantitative version of Crick’s qualitative
argument.

Finally, it is worth observing that Crick’s
argument depends on the correctness of a certain
functional analysis of the genetic code. Yet, the
standard methods for determining which tree is
best supported by a body of data—for example,
parsimony and maximum likelihood—do not
require a prior assessment of function. Can this
approach be applied to the Hypothesis of
Common Ancestry itself ?
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Another argument for the Hypothesis of
Common Ancestry can be constructed by
coupling an idea in the theory of the origin of
life with an idea in the theory of stochastic
processes. Oparin (1953) suggested that when life
first arises from non-living materials, it alters the
environment so as to make subsequent start-ups
much less probable.¥ Generalizing this point, let
us suppose that each new start-up makes the
next one less probable. If we add to this idea the
process of the “extinction of family names”, we
have the skeleton of an argument—it is highly
probable that all life will eventually trace back to
just one ancestor, if enough time elapses from
the date of the first start-up. This argument, like
Crick’s, is limited by the fact that it is merely
qualitative (Sober, 1999). What is the expected
number of start-ups? How probable is it, given
the time that has actually elapsed, that all
but one of those start-ups should have
disappeared?**

A third proposal for testing the Hypothesis of
Common Ancestry was formulated by Penny
et al. (1982). They used parsimony as their
method of phylogenetic reconstruction, however
their approach (and our comments on it) would
apply to other tree reconstruction methods, such
as maximum likelihood, or distance-based meth-
ods. In addition, they relied on the concept of
character congruence. A method of phylogenetic
inference judges that two sets of characters are

4 In fact, this argument is presented by Darwin: “It is
often said that all the conditions for the first production of
a living organism are now present, which could ever have
been present. But if (and oh! What a big if!) we could
conceive in some warm little pond, with all sorts of
ammonia and phosphoric salts, light, heat, electricity, etc.
present, that a proteine compound was formed, ready to
undergo still more complex changes, at the present day such
matter would be instantly devoured or absorbed, which
would not have been the case before living creatures were
formed (Darwin 1887, vol. 3, p. 18).”

There is a further detail. The process of the extinction
of family names, strictly speaking, pertains to the survival
dynamics of variants that arise in tree topologies. The
traditional pattern that the label was invented to describe
has surnames passing from a single parent (the father) to
children. The dynamics of the process are different under
other topologies. For example, suppose that life began with
two start-ups, which go extinct right after they hybridize to
produce a daughter species, and that subsequent descent
from that daughter is strictly tree-like [as in Fig. 5(d)]. One
no longer can predict that if one waits long enough, one of
those two start-ups must eventually have no descendants.
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congruent when the method says that they point
to the same phylogenetic tree. Penny et al.
reasoned that if there is a single tree uniting a
set of species, then the different characters that
evolve in that tree should be highly congruent
(when parsimony is used to identify the tree that
is best supported by each character); on the
other hand, if the species originated separately,
the characters should be much less congruent.
The five sets of characters they considered
—each of which consisted of nucleotide se-
quence data for a particular protein across a
group of mammals and a marsupial—were
highly congruent.f

While this test procedure may have some
merit, it is flawed in two ways. The first problem
is that a tree can generate non-congruent
characters with high probability; the second is
that lineages that arise independently of each
other can generate highly congruent characters.
The first possibility can be visualized by con-
sidering the unrooted tree (WX)(YZ) depicted in
Fig. 2(a). Suppose we obtain two data sets from
this tree, and that the characters in the two data
sets evolved according to different rules. For
characters in the first set, the rules of evolution
make it overwhelmingly probable that the tip
species will occupy states W=1, X=1, Y=0,
and Z=0 (1100, for short); in contrast, char-
acters in the second set evolve according to rules
that make it overwhelmingly probable that the

11 The idea behind this test is not that the existence of a
tree should lead us to expect that the most parsimonious
tree constructed from all the data at hand will contain
few homoplasies. Rather, the idea is that different trees
constructed from different data sets should largely agree if
and only if all the species are genealogically related,
regardless of whether those different trees each contain
lots of homoplasy.
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tip species will exhibit the pattern 1010. The two
data sets, though produced by evolution in the
same tree, will therefore be highly incongruent.
The second problem for Penny et al.’s congru-
ence test is illustrated by the four unrelated
lineages leading to the tip species S, T, U, and V
depicted in Fig. 2(b). Suppose that all characters
evolve according to rules that make it over-
whelmingly probable that the tip species will
exhibit the 1100 pattern, thus leading parsimony
to erroneously infer that either ST is mono-
phyletic, or UV is, or both are.

We conclude that the congruence test is
subject to type-1 and type-2 errors, the first
arising from rate differences among traits, the
second arising from rate differences among
lincages. Without some assurance that the
probabilities of these errors are small, we
conclude that character congruence does not
provide a good test of the Hypothesis of
Common Ancestry. Notice that both these
sources of error would disappear if a trait
followed the same rules of evolution in all
lineages and if all traits followed the same rules.
However, this reply raises the question of why
this restrictive model of character evolution
should be thought to apply to the five proteins
that Penny et al. considered. We note that the
probability of a type-1 error would be reduced if
the data sets were constructed by randomly
sampling from a larger data set (though this was
not part of the approach of Penny et al.).

Even if one were willing to assume that
different traits evolve according to the same
rules, there still is no unconditional guarantee
that a tree will generate data sets that are more
congruent than the data sets that would be
generated if taxa arose separately. As Penny et al.
note at the end of their article, the Hypothesis of
Common Ancestry can be statistically indistin-
guishable from the hypothesis of multiple
originations if lineages are sufficiently old. If
the past events of interest occurred sufficiently
long ago, they may constitute a temps perdu, as
we now discuss.

3. Why a Past Event May be Unknowable

It is worth pausing to consider the possibility
that there may be no way to find out whether

the Hypothesis of Common Ancestry is true. To
describe this further we recall some concepts
from information theory, in particular the
mutual information between two random vari-
ables X and Y, written /(X,Y) and defined by

IX,Y)=) PX =x&Y =y)
X,y

PX=x&Y = y)
log (P(X —9B(Y = y))‘

Informally, I(X,Y) is a nonnegative number that
measures the degree to which knowledge of the
value that Y takes conveys information about
the value X takes (and vice versa). In particular,
I(X,Y)=0 if and only if X and Y are indepen-
dent. Moreover, when I(X,Y) is close to zero, no
method can reliably predict X from knowledge
of Y. That is, no method can do much better
than just ignoring Y and guessing X; this idea
can be formalized by reference to “Fano’s
Inequality” (Cover & Thomas, 1991).

A simple analytical encapsulation of the
concept of time as an information destroying
process is provided by the classical ‘“‘data
processing inequality” from information theory,
one form of which states:

If X - Y > Z forms a Markov chain,

then (X,2)<I1(Y,Z).

That is, in the chain that goes from distal cause
to proximate cause to effect, the effect provides
at least as much information about the prox-
imate cause as it does about the distal cause;
information fades as we make inferences that go
deeper and deeper into the past. For example,
suppose we are considering a phylogeny, where
X is the branching pattern early on, Y is the
more recent branching pattern, and Z sum-
marizes the character states of tip species. Even
if the data on tip species provide substantial
information about relatively recent branching
events, they may fail to do so about branching
events that took place in the more distant past.
It is useful to quantify this and we do so now,
using some very recent results from probability
theory.
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In the following discussion, we will suppose
that a group of species has a common ancestor
and that these have evolved according to a tree
from this common ancestor (this does not
necessarily entail the Hypothesis of Common
Ancestry for all life, but just for the species we
are considering). Thus, we will suppose we have
a phylogenetic tree T whose leaf vertices
comprise a set S of extant species. Given a
discrete character that assigns to each species
from S a corresponding character state we wish
to use this information to infer an ancestral state
at some interior node in the tree. Relating this to
1(X,Y), the random variable X will specify this
unknown ancestral state, and Y will specify the
joint assignment of states to the extant species.
We wish to use Y to infer X, and we will be
helped in this task if we know the underlying
model of character evolution, the underlying
phylogeny 7, and its corresponding branch
durations with high precision. Yet, even in this
optimistic setting, if /(X,Y) is small it is
impossible to reliably infer the ancestral state
from the extant states (and this is true regardless
of whether one’s preferred methodology is
maximum likelihood, parsimony, Bayesian-
based or otherwise). We will see shortly that
this has further consequences for the resolution
of deep divergences in tree reconstruction, and
for testing the Hypothesis of Common Ancestry.

When will I(X,Y) be small? Essentially, it is
when the character is “‘saturated” by having
undergone too many substitutions due to some
combination of a high rate of substitution
and large time-scales. However, the story is
complicated by the fact that trees that last
longer may have more tip species, and larger
numbers of tip species provide a larger
inferential basis from which to infer the state
of the root of the tree (Salisbury & Kim, 2001).
Thus, increasing the duration of the tree has
both a negative and a positive effect—it moves
lineages closer to saturation, but it also gives rise
to more lineages, and hence to more sources of
information. For this reason, it is sometimes
possible to have more information about a node
(A1) in the tree that is further back in time from
the present than one has concerning the char-
acter state at a more recent node (A,), as shown
in Fig. 3.

FiG. 3.

To quantify the loss of information we can use
some very recent results from Evans ef al. (2000).
To simplify the discussion we will assume that
the character is 2-state (binary) and that it
undergoes substitution according to a symmetric
(Poisson) model with a constant rate of r
substitutions (on average) per year. The restric-
tion to symmetric models on binary characters is
for convenience, and some of the underlying
theory has recently been generalized to multi-
state characters by Mossel (2001). Furthermore,
for certain non-symmetric models of multi-state
character evolution, some similar bounds can be
derived (Mossel, in prep.) although the technical
details are slightly more involved.{}

Suppose that the most recent common ances-
tor of the species in S lived ¢ years ago, as in
Fig. 4(a). Then from Evans et al. (2000) the
following result can easily be deduced, as shown
in the Appendix:

Theorem 1. Under the 2-state, constant rate
symmetric Poisson model, operating on any
phylogeny T, let Y denote the joint states on the
set S of leaves of T and let X denote the state at

1iIn contrast to the binary symmetric case, there exist
non-symmetric random models of multi-state character
evolution that do not lead to the eventual loss of
information (regarding an ancestral state) over time, even
when we have just a single lineage. For example, consider
three states «, f5, y that are initially equally probable, but
evolve in such a way that o may randomly mutate into
either f§ or y (but § or y may not mutate to any other state).
Observing the state after any period of time allows us to
correctly estimate the root state with probability at least 1/2,
in contrast to the prior probabilities of 1/3, so the
information about the root state is never lost completely.
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the root of T. Then, the mutual information
I(X,Y) satisfies the bound

(X, Y)<ne ™,

where n is the number of species in S, t is the time
to the most recent common ancestor of S, and r is
the substitution rate.

Notice that the statement of the theorem is very
general in that although I(X,Y) depends on the
underlying tree, 7, and its branch durations,
these parameters do not enter explicitly into the
inequality shown. Note also that the term r¢ is
the expected number of substitutions that the
character has undergone on the path from the
root of T to any species in S. If this expected
number is large, the only hope for using Y to
estimate X is if the number of species in S is
large, but the relationship in the theorem shows
that » must grow exponentially with rz to keep
I(X,Y) away from 0.

For example, suppose we have a group of
1000 species, and their most recent common
ancestor lived at least 20 million years ago.
Then for a binary character that follows a
symmetric substitution model with an average
rate of one substitution per 2 million years
we have I(X,Y)<1000e . Fano’s inequality
(Cover & Thomas, 1991) then guarantees
that no method can infer X from Y with a
probability that is (to many decimal places) any
better than simply ignoring Y and blindly
guessing X.

3.1. SIGNIFICANCE FOR TREE RECONSTRUCTION AND
TESTING THE HYPOTHESIS OF COMMON ANCESTRY

We now describe the significance of this result
for two further questions. Firstly, Theorem 1 has

a direct bearing on the limits of tree reconstruc-
tion, in particular, for the resolution of “deep
divergences” in a tree. Suppose we have four
monophyletic groups, and we wish to use
character data to infer which of the three
possible (unrooted) topologies describes the
relationship between the four groups, as depicted
in Fig. 4(b). Suppose our character data consist
of aligned binary sequences of length k. As
before, we will be helped in our task (of
determing the relationships between the groups)
if we know the underlying model of character
evolution, the underlying phylogenies of the four
groups (77—T4) and the corresponding branch
durations with high precision. So we will assume
that trees 7,-T4 are known and that the
sequence sites evolve independently and identi-
cally according to a 2-state, constant rate
Poisson model with known branch durations.
How large then must k be in order to determine
the relationship between the four groups? As
before, this depends on the interaction between
the factors affecting saturation (substitution
rates and divergence times) and the underlying
phylogenies (77—-T,). Here, the data processing
inequality is useful. Let X denote the unknown
topological relationship of the four trees 77—74,
that is, the branching pattern, indicated by a
question mark in Fig. 4(b) that we seek to
determine. Let Y denote the four sequences at
the roots of the four trees [each of which is
indicated by a dot in Fig. 4(b)] and let Z denote
the collection of sequences at the tips of the four
trees (our data). We wish to use Z to infer
information about X. Since X - Y — Z forms a
Markov chain, the data processing inequality
gives

I(X,Z)<I(Y,Z).

Let us write Y=[Y;], where Yj; is the state at the
i-th site of the sequence at the root of tree 77,
and similarly let us write Z=[Z;], where Z;
is the aligned column of states at the i-th site
of the sequences at the tips of tree 7;. By
the assumption that the sites evolve indepen-
dently, and according to a Markov process on a
tree, the Z; are conditionally independent once
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we specify Y. Consequently, by the subadditivity
property,

(Y, 2)< ) I(Y,Zy).
i=1,...k

Furthermore,
I(Y,Zy) = I(Yy, Zy) = 1(Y}, Zy)),

where the first equality applies since, given Yj,
the random variable Z;; is conditionally inde-
pendent of all the other components of Y; the
second equality follows from the assumption
that the sites evolve identically. Combining these
(in)equalities, and applying Theorem 1 to bound
the term I(Y;, Z;;) gives immediately the follow-
ing result:

Corollary. The mutual information between the
branching pattern (X) of the four trees in Fig. 4b
and the sequences (Z) at the tips of the tree
satisfies

I(X, Z) <4k max;{ne ¥},

where n; is the number of tip species in T, t; is the
time to the most recent common ancestor of T;, r is
the substitution rate and k is the length of the
sequences.

This corollary sets explicit bounds on the
limits to which deep divergences can be resolved
with any reasonable accuracy in terms of some
basic quantities (n;, t;, k, r). For certain data sets
there can be no realistic possibility of resolving
deep divergences. For example, suppose we were
interested in some deep divergence in the tree of
life, such as the relationship between four
groups, each of which has a common ancestor
that dates back at least one billion years ago.
Suppose further that, for each group, we have
binary sequence data of length 10000 perfectly
aligned across say 100 species. Suppose the
substitution rate is at least one substitution per
100 million years. Then the bound given by the
corollary (together with Fano’s inequality) im-
plies that no method can reliably determine from
this data how these four groups are related
historically.

The corollary is also significant for the
question of testing the Hypothesis of Common
Ancestry. For, referring to our example depicted
in Fig. 4(b), if we cannot determine which of the
three possible (unrooted) topologies describes
the relationship between the four groups because
of the saturation effect described, then a similar
argument shows that we also cannot determine
from the data whether the four groups have
evolved independently from separate common
ancestors. In short: no tree, no test of the
hypothesis of common ancestry.

The above discussion is relevant to primary
sequence data under simple models of character
evolution. It would be illuminating to extend this
analysis to more elaborate models of sequence
evolution, such as covarion-type models, where
sites switch “on” and “off” over time (see
Huelsenbeck, 2002 or Penny et al. 2001).
Similarly, it would be useful to investigate
models for the evolution of secondary and
tertiary structure, and to compare the informa-
tion-theoretic loss for this data with that of the
primary sequence data.

The earth came into existence about 4.5 billion
years ago, and life made its first appearance (as
far as we know) about 0.7 billion years there-
after. Suppose that all organisms now alive trace
back to a single ancestor that existed 3.5 billion
years ago. Some species (such as the ones that
Penny et al. studied) have their most recent
common ancestor much more recently; they are
very closely related. Others have their most
recent common ancestor much longer ago.
Closely related species can be expected to retain
evidence of their common ancestry. Is the same
true of more remotely related species? Is it true
of all the species now alive? The Hypothesis of
Common Ancestry needs to be looked at more
closely, especially since evolutionary theory
suggests the possibility that information about
very ancient events may have been whited out by
the passage of time.

4. The Competing Hypotheses

The Hypothesis of Common Ancestry says
that there exists a single ancestral origin to which
all present-day living things trace back. This
hypothesis competes with alternative hypotheses
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that say that the number of ancestors is 2, 3, ...,

or n. More precisely, the hypotheses we want to

consider have the following form for i=1, 2,
R

CA—i There existed a set A consisting of i
species, and no set with fewer than i species, such
that:

(1) none of the species in A are ancestral to any
other species in A,

(i1) each of the current species (S, S», ..
has at least one ancestor in A, and

(ii1) each species in A is ancestral to at least
one S;.

- Sn)

Notice that, given a set of n current species,
the n hypotheses CA-1,CA-2, ..., CA-n are
mutually exclusive, and one of them must be
true. Notice also that if the hypothesis CA-i
correctly describes a set of species, then for any
subset of those species the hypothesis CA-j
applies for some j<i.

One possible criticism of our formulation is
that it involves the concept of an ancestral
“species” which may be problematic or ambig-
uous for certain origin-of-life models. For
example, the progenote theory of Woese (1998,
2000), postulates an ancestral community of
“primitive types of cellular entities” engaged
in extensive horizontal gene transfer as the
precursor to the three major domains of life
(Archae, Bacteria and Eukaryotes). If one
regards this ancestral community as constituting
a single ‘‘species” then this theory may be
compatible with CA-1. However, certain
formulations of this theory might also support
CA-i for i>1. We will not explore this
issue further here, but note that this issue is
relevant to any formulation or testing of the
hypothesis.

The Hypothesis of Common Ancestry thus
occupies one extreme on a scale; it sets i=1.
Located at the other end of this scale is the
hypothesis that each present day species is the
result of a separate origination event. This last
hypothesis, which sets i=n, has been defended
by creationists, but it need not be given a theistic
formulation. Notice that we can consider these n
competing hypotheses in terms of what they say
about all the species now in existence, or with

respect to what they say about a more limited set
of current species.

Figure 5 depicts four genealogies, each con-
sistent with the hypothesis of common ancestry
(CA-1). Figure 5(a) exhibits the familiar bifur-
cating tree topology. Figure 5(b) is a star
phylogeny. Figure 5(c) contains reticulation;
branches merge as well as split. In all three of
these genealogies, A is the first progenitor from
which all tip species derive. In topology 4d,
however, there are two start-ups (A and A,) and
neither goes extinct; however the two lines
deriving from A; and A, at some point merge,
and all tip species derive from the resulting
bottleneck (A). Figure 5(b) illustrates the fact
that the hypothesis of common ancestry does not
require that there be a nested hierarchy. Fig. 5(c)
shows that the hypothesis of common ancestry
does not require a strict tree topology. And from
Fig. 5(d) we see that the hypothesis does not
require that only one of the many start-ups that
life may have had has survived to the present.
The hypothesis requires this if all genealogies are
strictly tree-like, but not if there are reticula-
tions, and so Figure 5(d) supports CA-1.

To test these n hypotheses against each other,
we must determine what each predicts about the
observable features of organisms. However, this
is far from straightforward, since each of these
hypotheses covers a range of cases, and these
different cases confer different probabilities on
the data. Each hypothesis (CA-i) is consistent
with several kinds of topology, and each kind
of topology is consistent with several specific
topologies. For example, the Hypothesis of
Common Ancestry (CA-1) is consistent with a
strict tree-like genealogy, but it also is consistent
with reticulations, as we have just seen. And
within these two types of topology, there are
numerous specific topologies. For example, for n
tip species, there are (2n — 3) x 2n —5) x -+ X
5 x 3 rooted trees. The same situation obtains,

Sl S2 SB SA Sl SZ S3 S4 Sl SZ S3 Sl SZ 83 S4
S
A A A Al/\AZ
(€Y (b) (©) (d)
FiG. 5.
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of course, for (CA-2). Here, we have to consider
the possibility that there are two trees, that there
1s one tree and one reticulate structure, and that
there are two reticulate graphs.

However, we still are not finished, in that even
a specific topology does not, by itself, confer a
probability on the traits we observe. What we
need next is a model of the processes of character
evolution that occur in the different branches
in a genealogy. Here again, there are many
possibilities. A model may require that a trait
follow the same rules of evolution on different
branches, or allow it to obey different rules
(““branch homogeneity/heterogeneity’’). And the
model may constrain different traits on a given
branch to obey the same rules, or allow them to
follow different rules (“‘trait homogeneity/het-
erogeneity’’). And the model may stipulate, of a
single trait on a given branch, that all changes
are equiprobable (i.e. the probability of changing
from i to j is the same as the probability of
changing from k to /, for all states i, j, k, [), or it
may allow different changes to have different
probabilities. There are further distinctions that
might be drawn among different process mod-
els—for example, a model need not assume that
different traits evolve independently of each
other on a given branch—but we will ignore
these complications here.

These different features of the process model’s
parameterization—the rules governing a single
trait on different branches, the rules governing
different traits on the same branch, and the rules
governing different changes in a single trait on a
single branch—are logically independent of each
other. The set of all process models will be the
logical product of these different elements. It will
comprise a partially ordered set of models, with
a maximal element (one that is most complex)
and a minimal element (one that is simplest). The
simplest model says that all traits follow the
same rules (A), that each trait follows the same
rules on all branches (B), and that all changes
that a single character can experience on a given
branch must have the same probability (C); the
Jukes—Cantor (1969) model for nucleotide evo-
lution is of this form. At the opposite extreme is
a model that allows traits to follow different
rules (-A), and allows a single trait to follow
different rules on different branches (-B), and

also allows each possible change of a single trait
on a single branch to have its own probability
(-C). The partial ordering is as follows:

most complex -A&-B&-C
| AN
A&-F&-C -A&B&-C -A&l-B&C
A&B&-C A&-B&C -A&B&C
simplest AN A&B&C

Each of these process models contains adjus-
table parameters, with simpler models contain-
ing fewer. When we conjoin a graph G; with a
process model M;, we still have not obtained a
hypothesis that confers a probability on the
observations. However, we can estimate the
values of the parameters in the model G; & M;
by using maximum likelihood estimation. Once
the adjustable parameters in G; & M; are fixed at
their likeliest values, we obtain a statement that
contains no adjustable parameters, namely
L(G; & M)). This, finally, is a hypothesis of the
type we have been seeking. Note that G; & M;
and G; & M, may be nested, but that G; & M;
and Gy & M; are not. The set of topology/model
pairs we are considering consists of disjoint
subsets, each of whose members forms a partial
ordering.

At long last we have obtained hypotheses that
confer probabilities on the observed features of
tips species. We now face two questions: How
are these different conjunctive hypotheses to be
evaluated? And how does their evaluation bear
on the question with which we began—that of
assessing the hypothesis of Common Ancestry
(CA-1) against its competitors (CA-i, for i>1)?

5. The Problem of Realism and the
Mimic Theorem

Since there are so many process models that
one could consider (far more than the eight
examples described above), perhaps the problem
could be simplified by taking a single, realistic
process model and discarding the rest. The most
realistic process model will be maximally
complex. This is because the assumptions A, B,
and C are idealizations—we know that they are
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false. On the other hand the model -A & -B & -C
is entirely open-minded. For example, this model
does not assert that different traits follow
different rules, but merely assigns each trait its
own suite of parameters; these may be equal in
value, or unequal. This realistic model allows the
data to decide what the best settings of these
parameters are; it does not stipulate in advance
that parameters for different traits must have
exactly the same values.

Although realism and open-mindedness are
often scientific virtues, they spell disaster in this
and many other inference problems (Sober,
2001). The reason is that the most general/
realistic model (M,) leads all tree topologies to
have the same likelihood, namely the maximum
value of 1 — when T; & M, and T; & M, are
each fitted to the data, L(T; & M,) and I(T, &
M,) will have the same maximal likelihood. As
Lewis (1998) notes, increasing the complexity of
the process model leads the likelihoods of all
topologies to increase, but also to draw closer to
each other.

We now describe a mathematical result
(Theorem 2) that more precisely captures the
problem at hand. Suppose that Gy is the true
underlying graph describing the evolution of a
collection of species, and suppose that a process
model M, with its parameters set at Py governs
character evolution. Then, for any other graph
G,, there exists an associated process model M;
whose parameters are set at P; such that G; & M;
& P, fits the data at hand as well as To & My & Py
does. Here either the true graph Gy or the
alternative G; may involve the CA-i for any
values of i. In other words, a false topology can
mimic the fit-to-data achieved by the true
topology, once that false topology is equipped
with a suitably chosen process model.

Before describing this result formally, we
provide a simple example, which is germane to
our project of testing CA-1 against competing
hypotheses of the form CA-i (for i>1). This
example is illustrated in Fig. 6. The tip species A
and B either (6a) trace back to a common
ancestor C, or (6b) are the products of separate
origination events. Suppose that (6a) is true
and that dichotomous characters evolve on
the branches of this tree by following a sym-
metric model of character evolution, wherein

(3 (b)
FiG. 6.

P(0—-1) = P(1->0) = 0.25 on each branch. Sup-
pose that C=0 is the ancestral condition for
each character. Then the joint distribution of
possible character states for A and B is

P(A =1&B=1)=3/16,
P(A =1&B =0)=3/16,
PA =0&B=1)=3/16,
P(A =0&B =0)=7/16.

We can also calculate the marginal probabilities
P(A=1)=P(B=1)=3/8. Notice that when
A and B evolve from their common ancestor
C according to the process model just stated,
their character states will be correlated, in
that

PA=1&B=1)>PA=1)PB=1

If A and B have correlated character states in
virtue of their common ancestry as shown in
Fig. 6(a), how can the hypothesis of separate
ancestry depicted in Fig. 6(b) mimic this result?
The answer is simple: we merely adopt a
different, and more complex, process model,
wherein different traits evolve according to
different rules. More precisely, suppose, that
(6b) is true and that traits of two types evolve on
this topology. Traits of type-1 all begin with C,;
and C, is state 1. Traits of type-2 all begin with
C; and G, in state 0. Let 25% of the traits be of
the first type and 75% of the second. If the
probability of change is 1/4 on each branch,
the hypothesis of separate origination (6b)
will mimic the predictions of the hypothesis of
common ancestry (6a). Symmetrically, if the
data are generated according to model (6b), it is
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easy to mimic the resulting data by suitable
parameter settings for the model described
by (6a).

We generalize this idea as follows. Suppose we
have a fixed, finite set of character states (e.g. A,
C, G, T), and let p(ay,..., a,) denote the joint
probability of generating the character state a,
for species 1, a, for species 2, ..., a, for species n.
Under the extreme hypothesis CA-n, of inde-
pendent origin of species, and allowing for a
mixture of different processes, we can write

N n
plar, a) = m [ [ fula) ()
=1 =l

for suitable probability distributions f; and =
and some number N of categories.

On the other hand, if we have a “tree-model”
but also allow mixed processes (e.g. for DNA
sites to evolve at different rates), and for each
category j of classes we have a Markov model M
on a binary tree, with non-degenerate (positive,
but finite) parameters (e.g. branch lengths) 0;, we
can write

N
p(al’ "'9a}’l) = Zn;P(al’ seey a}’l|T7 Ma 0])’ (2)
j=1

where P(ay,...,a,|T, M, 0)) is the probability of
generating the character ay,...,a, by Markov
process M on tree T with parameters 0;.

Let p=[p(ay,..., a,)] denote the vector of all
these " joint probabilities, where r is the size of
the underlying state space. Whether we can
distinguish between these two models depends
on what restrictions we place on the model M,
and on N and N’ (the number of categories, in
relation to n) and the values 0; can take, which
may depend on constraints that apply across
categories. Certainly, there are cases where
we can distinguish between these models, for
example, if N'=N=1. However, if we impose
no restrictions then the two models confer the
same probabilities on any possible observation
of the character states at the tip species. More
precisely, we have the following result whose
proof is given in the Appendix:

Theorem 2. For any probability distribution p on
C", we can represent p exactly by a probability

distribution of the type of eqn (1), and we can
represent p arbitrarily closely (and using any tree
T) by a probability distribution of the type of
eqn (2). In particular it is impossible to distinguish
between models described by eqns (1) and (2) in
terms of their fit to data without imposing
additional constraints or assumptions.

However, once some assumptions are in place
it becomes possible to distinguish between the
models. For example, suppose we require that M
IS a continuous-time symmetric, stationary
Poisson-process model (e.g. Jukes—Cantor, or
Kimura 3ST), but we do not impose any further
restrictions (i.e. the 0, and =n/ are completely
unconstrained). Then it can be shown [from eqn
(2)] that p(ay,..., a,) is maximized when a; =
ar, = --- = ay; however, this is not necessarily the
case for the “non-tree” model. A more interest-
ing example, is the following: if M is any
stationary reversible model, and, for each j, the
branch lengths 0; satisfy a molecular clock (but
are otherwise unconstrained) then this places
considerable constraints on p, even without
knowing anything about N’, 7’ or the further
details of M. Indeed p suffices to reconstruct
T (and from just the induced pairwise
marginal distributions, see Theorem 4 of Steel
& Penny, 2001). Another restriction that might
prove useful in distinguishing between the
models is to limit the size of N relative to n,
since the proof of Theorem 2 requires N to grow
quickly with n.

6. A Way Forward

Standard frequentist statistics provides a
methodology for coping with the problem we
are considering, but its scope of application is
limited. If two models are nested, one can use
a likelihood ratio test to decide whether the
simpler model should be rejected. Thus, it is
perfectly possible in this framework to compare
A&B&C&G;and A & B &-C & G; and to
compare A & B& C & G;and A & B &-C & G;.
If the simpler model cannot be rejected in either
topology, one then can compare A & B& C & G;
and A & B & C & G;. But suppose that the data
permit one to reject A & B & C & G;, but do not
permit one to reject A & B & C & G;. One then
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needs to compare A & B &-C & G;and A & B &
C & G;. The likelihood ratio test does not apply
in this instance—one cannot compare different
topologies that have different process models
attached to them.

A solution to this problem is furnished by the
Akaike information criterion (AIC). AIC is
based on a theorem (Akaike, 1973; Sakamoto
et al., 1986) that describes how the predictive
accuracy of a model M containing adjustable
parameters can be estimated:

An unbiased estimate of the predictive accu-
racy of M ~ log-likelihood[L(M)]—*k.

L(M) is the hypothesis obtained from M by
assigning values to adjustable parameters that
maximize the probability of the data. Good fit-
to-data enhances a model’s estimated predictive
accuracy, but there also is in Akaike’s theorem a
penalty for complexity, represented by k, the
number of adjustable parameters in M. One does
not automatically embrace the more complex
model—its gain in likelihood must be sufficient
to compensate for its loss in simplicity. AIC
applies to nested and non-nested models alike,
and it was recently applied in the context of
phylogenetic analysis of molecular data by
Posada & Crandall (1998, 2001a, b).

With this methodology in hand, we can
return, finally, to the problem with which we
began. To test CA-1 against various CA-i (i> 1),
one should consider many specific evolutionary
graphs (G, Gy, ..., G,) and a variety of different
process models (M;, M,, ..., M,,). One then
should calculate the AIC score for each con-
junction (G; & M;). This will involve taking
account of the likelihood of L(G; & M)), relative
to the data set one is using, but also one will
have to attend to the number of parameters in G;
& M;§§ We do not advocate accepting the
hypothesis G; & M; that has the highest score
and rejecting all the rest. Rather, one should
look down the list of hypotheses, from best to

§§ The number of parameters in (G; & M)) is not a
function just of M, For example, the simple (A&-B&C)
model discussed in Section 4 has three branch parameters
when applied to the topology depicted in Fig. 6(a), but only
two when applied to the topology in Fig. 6(b).

worst, and note which of these entails CA-I,
which entails CA-2, and so on. Suppose that the
first n hypotheses on this list entail CA-1 and
that a hypothesis entailing CA-i (for i>1)
appears only further down. The larger # is, the
stronger the evidence is for the hypothesis of
common ancestry. In addition, one needs to
attend to the magnitude of the AIC scores, not
just to their ordering (Burnham & Anderson
1998). It would be desirable to have a method for
quantifying the weight of evidence that each CA-
i hypothesis receives, given the range of models
and topologies considered, but we are unsure
how best to do this. Nonetheless, we suggest that
an AIC-based approach will help illuminate the
problem of testing the hypothesis of common
ancestry. Although it is important in this
procedure that several process models be con-
sidered, it may not be necessary for the set of
terminal taxa to be large. For example, one
could address the question of whether human
beings and a species of yeast have a common
ancestor—here there are just two topologies, the
ones depicted in Fig. 6.

7. Conclusion

The hypothesis of common ancestry is central
to contemporary evolutionary theory. However,
a valid methodology for testing that hypothesis
that allows one to look at suites of characters has
not, until now, been available. We hope that
biologists will use the protocol we have described
for different sets of species. It may turn out that
all is well with the conventional wisdom on this
subject. What Crick defended by considering a
single characteristic—the genetic code—may be
vindicated when one considers sets of character-
istics whose functional significance is less well
understood. But perhaps it will emerge that for
some groups of species, the data do not provide
unambiguous support for the idea that there is a
single common ancestor. If there is a ftemps
perdu—if genealogical connections are unretrie-
vable for events that are sufficiently far in the
past—this is something that biology needs to
ascertain. And if one of the CA-i (i>1)
hypotheses fares better than CA-1, this too
would be a result of considerable interest.
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APPENDIX

Proof of Theorem 1. By Theorem 1.3 of Evans
et al. (2000),

IX, V)< 0;,

where the summation is over all leaves of the

tree, and
.= ]I

e€ path(root, v)

(I = 2p(e)),

where p(e) is the probability of a net substitution
across e. Now if substitutions occur at constant
rate r throughout the tree, then

ple) = §(1 — e )

where #(e) is the temporal duration of edge e.
Consequently,

—2rt
0,=e"",

where 7 is the total time from the root of the tree
to the present. The result now follows from the
equation at the beginning of the proof. [

Proof of Theorem 2. Denote the finite state space
(of size r) by the set C. Suppose that p is any
probability distribution on C". We will show that
p can be represented by eqn (1). Let us order the
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N=1r" elements of C" as a'V, ..., a™. Forj =

1,..., N, consider the following (degenerate)
probability distribution f;;, defined on the state
space C by setting:

Jij(b) = .
0 if(a"),#b.

Then, pai,...,an) = Y50 m T11 fi(a:), where
T = p(a?). This completes the proof of the first
claim.

Conversely, suppose p is any probability
distribution on C". By the first part of the
theorem, p can be represented by eqn (1). We
will show that p can be represented arbitrarily
closely by eqn (2) for any (rooted) tree 7 and
with N/ = N. Let us assign a uniform distribution
of states from C at the root vertex of 7. For each
category value j, and edge, e of T, consider the
non-stationary, continuous-time Markov pro-
cess described by an intensity matrix Qje)
operating at rate A(e) on edge e. The associated
transition matrix for edge e of T is given by the
familiar relationship:

]Wj(e) — eMagile).

It remains to specific A(e) and Q(e). These can be
completely arbitrary if e is an interior edge of 7.
If ¢; is the pendant edge of T incident say with
leaf i, set all the off-diagonal entries in the i-th
column of Q;(e;) equal to f;(/). Using standard
Markov process arguments, as A(e;) tends to
infinity, the matrix AM;(e;) converges to the
matrix that has all entries in the i-th column
equal to f;;(/). Consequently, for any £€>0, one
may take A(e) sufficiently large so that
IM;(e)—/f;(I)] <e holds for all values of k, /
in C and each value of i and j. For the model as
described, the probability of generating the
character (ay,..., @,) is

Z Pr(ﬁlgjgn{v(i) = k;})

[IM e, = [ fita) + O),
i=1 i=1

where v(7) is the ancestral vertex to vertex i. If
we now take a mixture of such non-stationary
processes by setting nj. =mn; for j=1,..., N, we
obtain the required representation, up to terms
involving ¢, via eqn (2). This completes the
proof. [
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