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Testing the theory of evolution by comparing
phylogenetic trees constructed
from five different protein sequences
David Penny’, L. R. Foulds’ & M. D. Hendy*

* Department of Botany and Zoology, and § Department of Mathematics and Statistics, Massey University, Palmerston North, New Zealand
+ Operations Research, University of Canterbury, Christchurch, New Zealand

The theory of evolution predicts that similar phylogenetic trees should be obtained from different sets of character data.
We have tested this prediction using sequence data for 5 proteins from 11 species. Our results are consistent with the

theory of evolution.

THE theory of evolution continues to be a focus for nearly all
biological thought. Nevertheless, there have been doubts about
the philosophical status of the theory, particularly on the extent
to which it can be tested or falsified. The best known of these
doubts have been expressed by the leading philosopher on
scientific method, Karl Popper’, who concluded that “‘darwin-
ism is not a testable scientific theory, but a ‘metaphysical
research program’—a possible framework for testable scientific
theories”. Popper did not in any way reject evolution. He
pointed out (ref. 1, p. 169) that ‘‘no serious competitor has
come forward” and commented on ‘‘the strange similarity
between my theory of the growth of knowledge and darwinism”.
In particular, he suggests that only one prediction is possible
from darwinism: ‘“Gradualism is thus, from a logical point of
view, the central prediction of the theory. (It seems to me that
itis the only prediction.)” (ref. 1, p. 172).

Popper has recently modified these criticisms?, pointing out
that criticisms by some authors were inconsistent, such as that
natural selection is a tautology, and that it explains too much.
A tautology explains nothing, so cannot simultaneously explain
“too much”. In addition, the suggestion was made that the
existence of an evolutionary tree was falsifiable, but no reason-
ing was given for this new opinion.

These criticisms have aroused considerable interest®>®. Most
of the discussion has, however, been qualitative, so it would be
useful to be able to make quantitative tests. This is the purpose
of the present article.

Popper makes the important distinction between the
existence of an evolutionary tree (an evolutionary history) and
the mechanism of evolution put forward to explain the processes

‘that produced that history. Here we present a programme,

applying graph theory®’, by which it is theoretically possible
to refute the existence of an evolutionary tree.

Another prediction from evolution

It has been long been considered that protein sequence data
contain evolutionary information®. In particular, the tree of
minimal length (minimum number of mutations, maximum

parsimony) makes no assumptions about the mechanism of
evolution, and has been widely used as a model for evolutionary
relationships®'. Given any comparative data, irrespective of
origin, one can construct trees of an evolutionary form, and
hence a minimal tree must exist. So in general, finding a minimal
tree for protein sequence data is not in itself independent
evidence for the existence of an evolutionary tree.

However, another prediction can'be made if there has been
an evolutionary tree and if the maximum parsimony model is
a good predictor of that tree. The prediction is that minimal
trees with the same taxa should be similar, or ‘congruent’?,
when constructed from different protein sequences. We need
a measure of tree similarity having biological significance so
that the values can be compared with the hypothesis that the
trees are randomly selected. Such a measure is described below.

Our strategy is to take different protein sequences for a
common set of taxa, find all the minimal (and near minimal)
evolutionary trees and then compare them. Should the probabil-
ity be high that these trees are unrelated, this would indicate
that the protein sequences do not contain similar evolutionary
information, and hence would contradict the existence of an
evolutionary tree for those taxa.

We conclude that the existence of an evolutionary tree for
these taxa is a falsifiable hypothesis, and therefore meets
Popper’s criteria for scientific theories. In addition, our methods
allow us to identify a consensus tree which incorporates the
most common features of all the near minimal trees.

Finding minimal evolutionary trees

It is easily shown that any minimal evolutionary tree can be
represented by a binary tree. Using the double factorial notation
(1!) there are 2n —S)!'=1x3x5...X(2n ~5) unrooted binary
trees spanning n sequences'>’?, To determine the trees of
maximum parsimony (minimal length), one must potentially
consider a vast number of different tree topologies. But for all
but a small number of sequences (n < 8), present day computers
cannot consider them all*’.

Table 1 The frequency p(m, n) of occurrence of d(Ti, Tj) = m for binary trees spanning n taxa4<n=<11

m=0 2 4 6 8 10 12 14 16 E(n)

n=4 3.3x10™" 6.7x107" 1.34
5 6.7x1072 2.7x107! 6.7x107" 3.20

6 9.5%x1073 5.7x1072 2.4x107! 7.0x107! 5.24

7 1.1x1073 8.5x1073 4.6x1072 2.2x107! 7.3%x107! 7.32

8 9.6%x107° 9.6x107* 6.5x1073 3.8x1072 2.0x107" 7.5x107" 9.40

9 7.4%10°¢ 8.9x107° 7.0x107* 4.8x1073 3.1x107? 1.9x107" 7.7x107! 11.46

10 4.9x1077 6.9%x107¢ 6.2x107° 4.8x107* 3.6x107? 2.7x1072 1.8x107" 7.9x107! 13.52
11 2.9%x107 4.6x1077 4.7x107° 4.0x107° 3.3x10™* 2.8x1072 2.3x107? 1.7x107" 8.1x107" 15.55

E(n)=X mp(m, n) is the weighted mean or ‘expected value’ of d(T%, 7}) for randomly selected binary trees Ti, Tj spanning n taxa.
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11 310 12 3le 13 319 14 31s 15 317 Fig.1 The 39 minimal and near minimal
trees spanning the 11 taxa given in Table
2. T1-T11 are generated from the com-
HAmMOMEPSCDX HARPSCEDM OK HARQOQCBPEDMXK HARDMSCPEDK Ha4aROMSCPEDK pletesequences,T12—T17fromcyto-
chrome ¢, T18 from fibrinopeptide A,
T19-T26 from fibrinopeptide B, T27-
. 319 17 317 18 321 19 320 20 137 T32 from haemoglobin A, and T33-7T39
16 f
from haemoglobin B. The trees are
arranged with their sequences in
MWAROBCPEDMK HARMOSCPE DX HARMOMCPSEDRK MWARNOSPCEDK HAMROSPCEDN increasing lengths (see Table 3). The total
number of mutations of each tree for the
combined sequences is shown. The
lengths of individual links are not shown,
8 325 327 25 327 X > not | ,
21 328 22 32 23 24 only the branching sequence is indicated.
See Table 2 legend for definition of letter
HARMOEPCSDEK HARMOPCS EDK M ARMOPCSEDK HARNMOSCPEDRK HARMOSCPEDK abbreviations.
26 330 27 315 28 320 29 327 30 331
H ARAMODSPCEDNK HARONDZPCSTEHK NA.HD;O’ICEI HAARAMODPSCEHK H ARDOMMZPSCEHK
31 321 a2 316 a3 322 a4 a1z as 317
HARNDOEZSCPK H ARODDMSCPEKX H ARADOSCEPENK H ARDOMSCPERQNK M A RDOMSCEPERK
a6 3125 a7 335 39 3113
W ARDSCPIDMG©E H ADRMOMZSC?PEHRK H A RNRDOMSC?PERUNX

We have shown that the problem of finding minimal length
trees is an example of the Steiner problem in graphs'>'® which
makes no assumptions about the existence of an evolutionary
history. Two recent techniques developed by the authors (refs
15-17 and D.P.,, in preparation) have enabled us to solve this
for some larger sets of sequences (in one case a tree with 25
species has been proved minimal). These techniques rely on
the inherent structural content of the data and are found not
to work well on random data. This is an indication that there
may be considerable tree-like structure within the sequence
data. However, these observations are not easily quantifiable
and the inability to use such methods on some data sets of this
size (8 <n <25) could not be taken as evidence for or against
the existence of an evolutionary tree.

Here we have used a recently developed (ref. 17 and D.P.,
in preparation) ‘branch and bound’ method” which, for the data
in Table 2, has found all minimal and near minimal trees.

Comparison of trees

Several methods have been proposed'® that measure some
features of the difference between a pair of trees, but it is
important that any method chosen has biological relevance.
Apart from satisfying a historical curiosity, a major application
of an evolutionary tree is to assist in the classification of the
taxa into groups at different levels. The set of taxa that are
descendants of a given common ancestor will form a group of
related taxa. In a strictly bifurcating (binary) tree spanning n
taxa, there will be n —2 such non-trivial classes of the taxa.
As in Robinson and Foulds'®, we measure the difference
d(T1, T2) of two trees T1 and T2, as the number of classes
which are derived from T'1 or T2, but not both. It is easily
shown that this measure forms a metric on the space of all trees
spanning these n taxa.

Given a non-directed tree T (one in which the root has not
been specified), the removal of any internal link will partition
the taxa into two subsets, one of which (depending on orienta-
tion) will be a group of related taxa. Waterman and Smith®
have shown that the set of all such partitions uniquely defines
T. Thus, d(T'1, T2) also represents the number of partitions of
the taxa formed by deleting internal links, which differ in the
two trees. This analysis is independent of whether or not the
tree is a rooted tree.

Probabilities and tree comparisons

We can, for any specific tree T, determine the value of d(T, T")
for each of the (2n —5)!! trees T"'. Then the proportion of trees
with d(T, T') = m will represent the probability that a randomly
selected tree T’ is distance m from T.

For binary trees the number of internal links is n — 3, so each
tree defines n—3 partitions. If Ti, T/ have m partitions in
common, d(T%, Tj) =2(n —3 —m) which is even, and can range
from 0 to 2n—6. The value d(Ti, Tj) =0 can occur only for
i=j, so the frequency of d(T%#, Tj)=0 is 1/N, where N=
(2n = 5)!!. If d(Ti, Tj) =2 then there is only one link at which
the two trees disagree. If we delete one internal link of 7,
there are two alternative ways of rejoining it to give values
d(Ti, Tj)=2. This could occur at any of the n» — 3 internal links,
so we find d(Ti, Tj) =2 with frequency (2n —6)/N.

The values of d(Ti, Tj) over all pairs of binary trees spanning
n species for 4 <n <11 have been determined using recursive
generating functions (D.P. and M.D.H., in preparation). These
results are summarized in Table 1.

We can, for a given value of m, use these frequencies to
estimate the probability of randomly selecting two trees Ti, Tj
with d(Ti, Tj)=m. Referring to the case n =11, we would,
for example, expect d(Ti, Tj)=4 to occur with probability
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Table 2 Nucleotide sequences derived from the 5 polypeptides for 11 taxa

Taxon

POTOVODOXT=REWOD

POATOVOODOIXRMmMW®DO

Haemoglobin A

CUCGGGGGGAUUACGGAAACUAGGAAAGGCAGCUGCAGAG
GAGGGGGGCAUUACGGGCAAAAGCCGGAGACUGUAACAGA
GACGGGGGGAUUGCGCAAACUAGCCGGGGACGUUAACGAG
GGGGAGGGGACAACACAAGCAAAACGGAAAAGCUGAAGGC
GUCAGGAGGAUCACGGAAGAACCCCGGGGCAUCAGCCGAG
CACAGAAGGAUUGAACAAAAAAGCCGGGACAAAUUCAGAA
CACAARMAGGCCAACGCAAAACACCCGGGGCAUGAACAGGC
GGCGGGGCGAUUGAGCGAAAAAGCAGGGGCAUCUAACAAA
CACGGGGCGAUUACGGAAAAACCGAAAGGCAGCUGCAGAG
GGGGGGGGCAUUACGGGCAAAAACCGGGGAAUCUAGCGAA
CACGGGGCGCUUACGGAAAAACCGAAAGGCAGCUGCAGAG

Fibrinopeptides A and B

GAGGGAGGACCCG
GCGUGGGGAACCG
CAGAGAGGAACAG
CAAAGAGACAACG
GAGGACAGAAAAC
GCGGGAAACAAAC
AUAAGAGGAAACG
GGCAAAGGAACCG
GUGGGAGGACCCG
GCCCAGGGACCCG
GUGGGAGGACCCG

AGAGAGAAGCCUAG
AGGGCAACUCCUGA
AGGACAAGUACUGA
AGGGUAAAGAGGGA
AGCAAGUGAAUUAG
AGCGAGAGUUUCGA
AGGAUGUAGACGGA
AGGCCAAGUCAGGA
UAAGAGAGGUUUAG
AGGCCAAGUGGUGG
UAAGAGAGGUUUAG

Cytochromec¢

Haemoglobin B

GCCACAAACACCCCCAUCUCCCGGCGGGACCAACCACAAGCUGACUAACAGCA
AACAGGCACGCUCCGAUCACGCGACGAUACAAAACGGCAGCGUGAUCAGUCAU
GCGUGGCUUGCCCAGCUCAACAGGCCAUGAGCACCAGCGGCGUGAUACGACCA
GCCAGAAACAGCAAACCAAAGAGCCGUGGCAAAAAAAAAAAAUAAUAAGAACG
GCAUGGCUCGGCCCGAUCUCGCGGGACGACCAACCAUCGAAAUACCACGCGCU
GCGAAUCACGCCCAGAUCUCGCAACGCGAACAGACAAAGGCAUACUAACAGCA
GCCAGUCUCGGCCCACUCACCCAGGAARUACCAAAAAAAAGCUGACUAACAGCA
GCCUGGCUUGGCCCGAUCAAGCGGCGAUAACAAACAAAGGAGUGAUCCGUCCA
GCCACUCACGCCCCGAUCACCCGGCGGGACCGCCCAACGGCUGACUAACCGCA
AACAGGCACGGUACGACAAAGCAACGAUACACAACGCAGGCGUGACCAGUCAU
GCCACUCACGCCCCGAUCACCCGGCGGGACCGCCCAACAGCUGACUAACCGCA

AAUUCAUCCCUAC
GCAGCUUACACGA
GCAGCUAACACCA
GCAGCUAAUCCGC
GCAGGUUACCCGC
GCAGGUUACCCAC
GCAGCUUACACGC
GCAGCUUACACGA
AAUUCAUCUCUAC
GCAGCUUACACGA
AAUUCAUCUCUAC

R =Rhesus monkey (Macaca mulatta); S =sheep (Ovis ammon); E = horse (Equus caballus); K = kangaroo (Macropus conguru or Macropus giganteus); M = mouse
(Mus musculus or Rattus rattus); O = rabbit (Oryctolagus cuniculus); D =dog (Canis familiaris); P=pig (Sus scrufa),; H=human (Homo sapiens); C=cow (Bos

primogenius); A = ape (Pan troglodytes or Gorilla gorilla).

4,7%107°, The weighted values, E(n), given in Table 1 are the
estimate of the expected value (2n —6). Small values of d(T3, Tj)
are very rare.

We have at this point established: (1) a method that can
guarantee to find all minimal and near minimal trees, (2) a
quantitative method of comparing trees and (3) a method of
associating frequencies with the comparison of trees. The next
stage is to apply these methods to comparative biological data.

Application to sequence data

When this study began there were polypeptide sequences avail-
able that were common to 11 taxa. The proteins are cytochrome
¢, haemoglobin A, haemoglobin B, fibrinopeptide A and the
last 13 amino acids of fibrinopeptide B. The original data are
from the Atlas of Protein Sequence and Structure®, together
with its supplements. There are cases, such as kangaroo, where
two species of the same genus have been used (Macropus
conguru and Macropus giganteus), but this does not affect the
result. Table 2 lists the species. Our methods will work with
more species and/or more sequences (for example, myoglobin,
a-crystallin A, RNase), but we frequently find just one sequence
is not available. There is an urgent need for more coordination
in selecting sequences for analysis.

The protein sequences were converted to nucleotide se-
quences? (with haemoglobin B, some nucleotide sequences
were available®®). The sequence data were edited to remove
invariant sites and other sites with no comparative information,
as these have no effect on the structure of the phylogenetic
trees (refs 10, 16 and D.P., in preparation). This left only a
small number of sites, particularly for cytochrome c, as it shows
little variation among these taxa. The final data are listed in
Table 2, with 40 sites from haemoglobin A, 43 from haemog-
lobin B, 13 from fibrinopeptide A, 14 from fibrinopeptide B
and 13 sites from cytochrome c.

Evolutionary tree construction

For 11 taxa there are 17!!=34459425 unrooted binary trees
to be considered. The branch and bound algorithm was applied
to each of the five protein sequences individually, as well as to
the combined sequences. Table 3 lists the numbers of trees
close to minimal length for each of the five data sets and for

the combined data. The 39 trees whose lengths are within
1.25% of the minimal lengths were selected for detailed com-
parisons and are illustrated in Fig. 1. In order that they should
be presented as rooted evolutionary trees, the marsupial
(kangaroo) was selected as determining the root or ancestor
of the tree.

Tree comparisons

It can be seen from Fig. 1 that there are only two identical
trees among these 39, 78=T738. Using the comparison
algorithm outlined above, we obtain the ,,C, =741 values of
d(Ti, Tj) ranging from 0 (1 value) to 14 (8 values) out of the
maximum of 16, with a mean value of 7.57. Interpolating from
the frequencies in Table 1, we would expect such a value to
occur between a pair of random trees with probability 1.9 x
107%, There are, of course, 741 comparisons but they cannot
be considered to be independent values. The average similarity
for comparisons of trees from the same sequences is 4.1 and
for comparisons of trees from different sequences is 8.33. The
expected and observed values of m are as follows:

m= 0 2 4 6 8 10 12 14 16
Exp. 0 0 0 0 0 2 17 125 597

Obs. 1 53 87 163 200 145 84 8 0

Table 3 The minimal length and number of trees close to minimal length for
each of the five sequences individually and combined

Minimal

Sequence length  min (min+1) (min+2) (min+3) (min+4)
Cytochrome ¢ 17 6* 55 195 321 368
Fibrinopeptide A 29 1* 37 403 2,724 12,449
Fibrinopeptide B 36 8* 126 475 1,313 4,660
Haemoglobin A 89 1* 5* 26 143 400
Haemoglobin B 124 3* 4* 25 41 105
Combined sequences 308 2* 3* 6* o* 8

* Those 39 trees with length <1.25% of the minimal. These 39 trees were
used in the comparative analysis and are shown in Fig. 1.
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Table 4 The average distance between trees derived from two sequences

() Cc FA FB HA HB
Cs 2.0/3.9 7.0 8.0 9.8 8.0 5.3
Ce 5.8 31 8.3 10.2 6.0 5.7
FA 6.9 8.3 — 4.8 10.0 11.3
FB 8.2 10.2 4.8 4.5 8.8 11.8
HA 8.4 7.6 10.3 112 —/4.7 6.7
HB 6.5 7.6 11.1 11.5 9.0 2.7/4.4

The values in the upper triangle are from comparisons among the 21 minimal
trees, the values in the lower triangle are from comparisons among the 39 trees
studied. CS = combined sequences, Cc = cytochrome ¢; FA, FB = fibrinopeptides
A and B; HA, HB = haemoglobins A and B. .

There is thus a strong divergence away from random towards
the trees being very similar. Note that it is logically possible
for the trees to have been more dissimilar than expected.

Table 4 gives the mean values of d(Ti, Tj) between trees of
different sequences, the upper values being obtained only from
the minimal trees, and the lower values obtained from all 39
trees. The largest mean that occurs is 11.75 between the
minimal length trees of fibrinopeptide B and haemoglobin B.
This value would occur between a pair of random trees with
probability 1.8 x 1072, All other values have probabilities less
than this, ranging down to 1.1x107° for fibrinopeptides A
and B.

Clearly, we can reject any idea that the trees from the
different sequences are independent. The different protein
sequences give trees that are markedly similar, showing a
relationship between them that is consistent with the theory of
evolution. This supports the theory but of course does not prove
it; scientific theories are falsifiable but not provable'?*,

Consensus tree

Of the 34459425 unrooted binary trees for 11 taxa, we have
selected the 39 near minimal trees for further study. The
minimal trees with the combined sequences are one estimate
for the most likely tree from these data, but it is also possible
to derive a ‘consensus tree’ which incorporates the most com-
mon features of the 39 trees.

We can, by using the partitions, find a particular tree T such
that the sum d(7, T1)+d(T, T2)+: - - +d(T, T39) is minimal.
In calculating the tree distances, we computed the number of
times each particular partition occurred in a given tree. The
nine most frequent partitions and the number of trees in which
they occur are {H, A} (39); {H,A,R} (37); {S,C} (30);
{S,C,P,E} (28); {§,C, P} (22); {K,D} (21); {H, A, R, O, M}
(16); {E, P} (12); {O, M} (12) (see Table 2 legend for definition
of abbreviations). For example, the first partition is {H, A}
which is human and ape, and this occurs in all 39 trees. Each
partition is defined by listing the smaller of the two subsets,
and so in this case ({H, A}) the remaining nine taxa are in the
other subset. The tenth most frequent partition occurs in only
seven trees.

Received 12 October 1981; accepted 16 March 1982.

. Popper, K. Unended Quest: An Intellectual Autobiography (Fontana, London, 1976).

. Popper, K. Dialectica 32, 339-355 (1978).

Halstead, B. New Scientist 87,215-217 (1980).

Ruse, M. New Scientist 89, 828-830 (1981).

. Editoria! Nature 290, 75-76 (1981).

Harary, F. Graph Theory (Addison-Wesley, Reading, Massachusetts, 1969}.

Carre, B. Graphs and Networks (Clarendon, Oxford, 1979).

. Zuckerkandl, E. & Pauling, L. J. theor. Biol. 8, 357-366 (1965).

. Dayhoft, M. O. & Eck, R. V. Atlas of Protein Sequence and Structure (National Biomedical
Research Foundation, Silver Springs, Maryland, 1966).

10. Fitch, W. M. Am. Nat. 111, 223-257 (1977).

11. Goodman, M., Czelusniak, J., Moore, G. W. & Romero-Herrara, A. E. Syst. Zool. 28,

132-163 (1979).

12. Mickevich, M. F. Syst. Zool. 27, 143-158 (1978).

13. Cavalli-Sforza, L. L. & Edwards, A. W. F. Evolution 21, 550-570 (1967).

14. Felsenstein, J. Syst. Zool. 27, 27-33 (1978).

15. Hendy, M. D., Foulds, L. R. & Penny, D. Math. Biosci. §1, 71-89 (1980).

CEANL B W=

The partition {E, P} with frequency 12 is inconsistent with
partition {S, C, P} with frequency 22. If we delete {E, P}, the |
remaining 8 partitions uniquely define the 8 links of a binary §

tree T spanning the 11 taxa. This tree is, in fact, the tree 77

in Fig. 1 of length 310 on the complete data and with an average °
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distance of 5.5 to the other trees. We call this tree the consensus §

tree of the set of trees and it could be regarded as being |

representative of the set. It is the tree which will give the }
minimal sum of m values when comparisons are made with all }

39 trees. It is a markedly better tree on this test than any other.

Other consensus tree methods are available®® but were less

appropriate for this application.

The consensus tree does have the advantage over the two

combined sequence minimal trees (71, T2) in that in the ungu-
lates, the horse (perissodactyl) is separated from the three

artiodactyls (cow, sheep and pig). References to results of

mammalian phylogeny from palaeontological evidence can be
found elsewhere’*?’. In McKenna’s published scheme®,

lagomorphs (rabbit) would be the first branch after the mar- |

supials. This does not occur in any of our 39 trees.

Conclusion
The general conclusions from the present work are that (1) it

is possible to make falsifiable predictions from the hypothesis |
that species have been linked in the past by an evolutionary

tree and (2) there is strong support from these five sequences
for the theory of evolution. There may be exceptions where

different sequences will lead to different trees as, for example, ]

in the serial symbiosis theory®®. Also, in pre-cellular evolution 1

a network with circuits may be a better model than a tree”.

Note also that this work has so far been confined to the question

of the existence of an evolutionary tree and has not discussed
the mechanism of evolution. The work can be extended by
using criteria of optimality that assume particular mechanisms
of evolution.

An interesting philosophical question would arise if the
results of this work had falsified the prediction that the trees
would be similar. Would this disprove the theory of evolution,
or could it just mean that the sequences had changed so rapidly
that they had lost all information about their early history, thus
contradicting the hypothesis of Zuckerkandl and Pauling®? It
could be argued that because proteins from different species
can be aligned so readily, this in itself is independent evidence
that the proteins retain evolutionary information. However, it
is probably true that specific predictions from hypotheses, rather
than the hypotheses themselves, are falsifiable. This idea is
inherent in Popper’s writing, but is more clearly expressed by
Lakatos™®. To this extent, we suggest that Popper’s criticisms
of evolutionary theory have shown incompleteness in the appli-
cation of evolutionary theory, but at the same time evolutionary
theory has helped clarify some inadequacies in Popper’s model
of the growth of knowledge.
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