the Strange, the Ugly, and the Bizarre

carnivores, parasites, and mycotrophs...
Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake.

Carnivore: Nepenthes
Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake.

Parasite: *Rafflesia*
Plant Oddities - Carnivores, Parasites & Mycotrophs

Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake.

Things to focus on for this topic!

1. What are these three types of plants
2. How do they live - selection
3. Systematic distribution in general
4. Systematic challenges or issues
5. Evolutionary pathways - how did they get to what they are

Mycotroph: Monotropa
Plant Oddities - The Problems

Three factors for systematic confusion and controversy

1. the specialized roles often involve reductions or elaborations in both vegetative and floral features — DNA also is reduced or has extremely high rates of change

for example – the parasitic Rafflesia
Plant Oddities - The Problems

Three factors for systematic confusion and controversy

2. their connections to other plants or fungi, or trapping of animals, make these odd plants prone to horizontal gene transfer

for example – the parasitic *Mitrastema* [work by former UW student Tom Kleist]
Plant Oddities - The Problems

Three factors for systematic confusion and controversy

3. often unrelated members of these groups converge unto the same morphology; often related members diverge in morphology

for example – carnivorous plants
Classic example of this systematic problem is a set of three families of carnivorous plants with various types of trapping mechanisms:

- **Nepenthaceae** - Asian pitcher plant
- **Sarraceniaceae** - American pitcher plant
- **Droseraceae** - Sundews and Venus fly trap

How are they related? [good exam question!]
Plant Oddities - The Problems

Why do plants have these unusual life styles?

Lack of basic necessities for life on land

- CO_3^{+3} uptake
- aquatic
- desert/epiphyte
- CAM
- C_4
- succulence
- parasite
- CO_2
- H_2O
- light
- parasites
- mycotroph
- tropical/temperate forest
- bogs, sand, weathered bedrock
- parasite
- mycotroph
- carnivore
Charles Darwin (and his grandfather) was the first to painstakingly study carnivorous plants.

In his book on "Insectivorous plants", he showed that they had adaptations to capture and digest animals.
Charles Darwin (and his grandfather) was the first to painstakingly study carnivorous plants.

In his book on “Insectivorous plants”, he showed that they had adaptations to capture and digest animals.

Tom Givnish, University of Wisconsin, has refined the definition of what is a carnivorous plant:

1. **Adaptations** to lure, capture, and digest prey
2. Ability to **absorb** nutrients from animals
Carnivorous Plants

Luring device of some type often involving color, movement, and smell
Carnivorous Plants

Luring device of some type often involving color, movement, and smell

Trapping device of some type (pitchers or drowning pools, steel traps, sticky leaves, etc.)
Carnivorous Plants

Luring device of some type often involving color, movement, and smell

Trapping device of some type (pitchers or drowning pools, steel traps, sticky leaves, etc.)

Ability to digest animals trapped, often with release of pronases and other enzymes into pool or on animal
Carnivorous Plants

Luring device of some type often involving color, movement, and smell

Trapping device of some type (pitchers or drowning pools, steel traps, sticky leaves, etc.)

Ability to digest animals trapped, often with release of pronases and other enzymes into pool or on animal

Mechanisms to uptake amino acids once animal is digested, often with specialized hairs or scales

Amino acids radioactively labeled being incorporated into the scales of *Brocchinia* (pineapple family)
Carnivorous Plants

What are not carnivores?

Plants which may accidentally kill (drown in this case) animals and even be able to utilize their amino acids; leaf “pitcher” in this case is simply an adaptation to collect water as an epiphyte.

Billbergia
Bromeliaceae
So it is not surprising that carnivores show up in groups that have "pre-adaptations" to the carnivory lifestyle.

Shown here are two species of *Brocchinia* that are carnivores in the pineapple family.

They are closely related to other species in the genus that impound water or are ant-fed, but not carnivorous.
Five major groups contain carnivores:

10+ separate origins

APG III
CHAPTER 3

Evolution of carnivory in angiosperms

Andreas Fleischmann, Jan Schlauer, Stephen A. Smith, and Thomas J. Givnish

2018
Carnivorous Plants

Carnivorous plants are centered in 3 nutrient poor bedrocks around the world.

Southeastern United States coastal plain: the ancient erosional product of the Appalachian uprise and with boggy peatlands
Carnivorous Plants

Carnivorous plants are centered in 3 nutrient poor bedrocks around the world.

Southeastern United States coastal plain: the ancient erosional product of the Appalachian uprise and with boggy peatlands

Western/Southern Australia - a Precambrian bedrock, highly leached, and nutrient poor
Carnivorous Plants

Carnivorous plants are centered in 3 nutrient poor bedrocks around the world.

Southeastern United States coastal plain: the ancient erosional product of the Appalachian uprise and with boggy peatlands

Western/Southern Australia - a Precambrian bedrock, highly leached, and nutrient poor

Guayana Highlands of southern Venezuela and adjacent areas of Brazil and Colombia - the higher elevation “tepuis” are rain drenched and extremely nutrient poor
Carnivorous Plants

Passive traps – no movement

pitfall

Sarraceniaceae - American pitcher plants
Nepenthaceae - Asian pitcher plants
Bromeliaceae - “pineapple” pitchers
Cephalotaceae - Australian pitcher plant

lobster pot

flypaper
Carnivorous Plants

Passive traps - pitfall

Heliamphora
Sarraceniaceae

Woody pitcher plants restricted to tepuis of South America
Carnivorous Plants

Passive traps - pitfall

Sarracenia
Sarraceniaceae

pitcher plants restricted to coastal plains of SE U.S.A. with *S. purpurea* (above) distributed to the north
Pitcher plants often have an alluring leaf flap, then downward projecting hairs, then a slippery slope of wax, and finally a drowning pool. Codine like compounds stupefy the insects before digestive enzymes are released.
Carnivorous Plants

Passive traps - pitfall

Darlingtonia (*Sarraceniaceae*) - the Cobra lily restricted to northern California and Oregon

Insects are attracted by sight of the “cobra” tongue and nectar produced there. Once in the pitcher, the insects slip into the drowning pool.
Carnivorous Plants

Passive traps - pitfall

Nepenthes (Nepenthaceae) is a large genus of pitcher plants in Asia and a few in African rainforests.
Carnivorous Plants

Passive traps - pitfall

Nepenthes (Nepenthaceae) is a large genus of pitcher plants in Asia and a few in African rainforests.

The pitcher is a modified leaf drip tip, a common feature in rainforest leaves.
Carnivorous Plants

Passive traps - pitfall

Brocchinia is one of two genera of Bromeliaceae, the pineapple family, that are carnivorous. It is the only example of a genus with both carnivorous and non-carnivorous species.

Catopsis is the only other carnivorous member of the Bromeliaceae.
Carnivorous Plants

Passive traps - pitfall

Brocchinia reducta is restricted to the nutrient poor summits of the tepuis. When grown in the greenhouse with nitrogen added, the leaves green up and the pitcher opens up.
Carnivorous Plants

Passive traps - pitfall

Cephalotus - the Australian pitcher - is so unusual looking that its systematic placement was unknown until recent DNA evidence placed it near the family Oxalidaceae or sorrels.
Carnivorous Plants

Passive traps

pitfall
Sarraceniaceae - American pitcher plants
Nepenthaceae - Asian pitcher plants
Bromeliaceae - “pineapple” pitchers
Cephalotaceae - Australian pitcher plant

lobster pot
Sarraceniaceae (Sarracenia psittacina)
Lentibulariaceae (Genlisea)
Carnivorous Plants

Passive traps - lobster pot

Genlisea - the **corkscrew** - semiaquatic carnivore of protozoa from Brazil, Africa, Madagascar. Modified leaves form a corkscrew which attract paramecium which get directed via hairs towards a digestion area.
Carnivorous Plants

Passive traps

pitfall
Sarraceniaceae - American pitcher plants
Nepenthaceae - Asian pitcher plants
Bromeliaceae - “pineapple” pitchers
Cephalotaceae - Australian pitcher plant

lobster pot
Sarraceniaceae (S. psittacina)
Lentibulariaceae (Genlisea)

flypaper
Byblidaceae - rainbow plant
Droseraceae (Drosophyllum)
Dioncophyllaceae
Roridulaceae
Plataginaceae
Byblis (Byblidaceae) - the *rainbow plant* - has modified leaves with sticky hairs. Light hitting the glandular hairs causes a rainbow effect which seems to attract insects.

However, **no movement** by either the leaves or hairs show and the mode of carnivory is thus considered passive.

Recently placed in Lamiales but once thought to be a Rosid.
Carnivorous Plants

Passive traps - fly paper

Roridula (Roridulaceae) - single species restricted to South Africa; now placed in Ericales
Carnivorous Plants

Active traps – with movement!

flypaper

Lentibulariaceae (*Pinguicula*) – butterwort
Droseraceae (*Drosera*) - sundews
Carnivorous Plants

Active traps - flypaper

Pinguicula (butterwort) has modified leaves with sticky buttery top surfaces. Leaves curl to assist in capture.
Carnivorous Plants

Active traps - flypaper

Drosera (sundews) have modified leaves with sticky tentacles. These are alluring, sticky, and move to further trap the insects.
Carnivorous Plants

Active traps – flypaper with a catapult!

Drosera glanduligera (S Australia) has two kinds of tentacles

“snap” is as fast as the Venus flytrap
Snap tentacle at 1/80th speed
Carnivorous Plants

Active traps

flypaper
Lentibulariaceae (*Pinguicula*) – butterwort
Droseraceae (*Drosera*) – sundews

steel trap
Droseraceae (*Dionaea*) - Venus fly trap
Droseraceae (*Aldrovanda*) - water wheel
Carnivorous Plants

Active traps - steel trap

Dionaea (Venus fly trap) has modified leaves acting as steel traps. Two trigger hairs must be touched to snap trap shut. One species, endangered, restricted to the Carolina bogs.
Aldrovanda - water wheel - old world rootless aquatic; the whorls of leaves are lobed as in the venus fly trap with small trigger hairs allowing the fastest known plant movement known (0.01-0.02 sec)
Carnivorous Plants

Active traps

flypaper
Lentibulariaceae (*Pinguicula*) – butterwort
Droseraceae (*Drosera*) - sundews

steel trap
Droseraceae (*Dionaea*) - Venus fly trap
Droseraceae (*Aldrovanda*) - water wheel

mouse trap
Lentibulariaceae (*Utricularia*) - bladderwort
Carnivorous Plants

Active traps - mouse trap

Utricularia (bladderwort) along with *Pinguicula* (a flypaper trap) belong to the Lentibulariaceae.

Utricularia cornuta
Beaked bladderwort
Carnivorous Plants

Active traps - mouse trap

However, *Utricularia* (bladderwort) has modified underwater structures (bladders) with a trap door that when triggered sucks in aquatic organisms.
Parasites are plants that gain some or all of their carbon, nutrient and water from other living plants (off roots, stems, or leaves).

Dodder parasitism first noted by Theophrastus around 300 BC

Presents numerous difficulties for systematists

- reduced vegetative features
- convergent vegetative features
- weird flowers often
- plastid DNA loss
- nuclear DNA evolves fast
- horizontal gene transfer with host

Cuscuta - dodder
Parasitic Plants

Parasites are plants that gain some or all of their carbon, nutrient and water from other living plants (off roots, stems, or leaves).

Holoparasites - Non photosynthetic (non-green) plants that are obligate parasites

Hemiparasites - Photosynthetic (green) plants that are facultative parasites

Comandra - toadflax

Cuscuta - dodder
Parasites are plants that gain some or all of their carbon, nutrient and water from other living plants (off roots, stems, or leaves).

Haustoria form connection of parasite (*Epifagus* - beechdrops) and host (*Fagus* – beech)
At least 13 origins of parasites have occurred in angiosperms. . . but some are so reduced and bizarre (even their DNA is strange) that we do not know where they should be classified entirely.

http://www.parasiticplants.siu.edu/index.html
At least 13 origins of parasites have occurred in angiosperms. ... but some are so reduced and bizarre (even their DNA is strange) that we do not know where they should be classified entirely.

For example - “Rafflesiales”

1. Rafflesiaceae
2. Hydnoraceae
3. Mitrastemonaceae

http://www.parasiticplants.siu.edu/index.html
Parasitic Plants

Order Piperales - Hydnoraceae

Very reduced family morphologically with a peculiar southern South America and southern African distribution. Related to Aristolochiaceae!
The hemi-parasitic sandalwood family is largely Old World and often important wood sources (sandalwood, gopher wood).
Parasitic Plants

Order Santalales - Santalaceae (sandalwood)

Two genera occur in the Great Lakes region. *Comandra* is known to have the greatest number of host plant species.

Comandra
Bastard toadflax

Geocaulon
earthstem
Most **mistletoes** are epiphytic (grow on branches of other plants). However, most epiphytes are not parasitic as they only use the host plant for support.

Mistletoes are found in both temperate and tropical climates, but most diverse in the tropics.
Parasitic Plants

Order Santalales - Balanophoraceae and other fungal mimics

Species so reduced and so fungus-like, that many only recently have been recognized as flowering plants. APGIII places them in Santalales.

Restricted to dark, wet tropical forest floors.
Parasitic Plants

Order Malpighiales - Rafflesiaceae

Holoparasite restricted to vines of the grape family in Paleotropics. Vegetative parts of plant is mycelia-like and within the host. Only the largest flower in world emerges from the vine.

Anatomy is so bizarre, many structures seem to have no homology with floral parts.

Rafflesia
Parasitic Plants

Order Malpighiales - Rafflesiaceae

Read the short Science paper by Chuck Davis and colleagues on where Rafflesiaceae is exactly placed within the order Malpighiales and why this placement is so bizarre!

Hint: the largest flowers in the world appear to be imbedded in a family with the ______ flowers in the world.

Rafflesia

![Image of Rafflesia](image-url)
As twining parasites, they attach to the host stems and penetrate into the vascular tissue.

Related to the twining, non-parasitic morning glories - preadaptation?

Order Solanales - *Cuscuta* (Convolvulaceae)

Ipomoea

Cuscuta
Order Lamiales - Orobanchaceae

The broomrape family contains both hemi-parasites (e.g., Indian paintbrush, lousewort, and false foxglove).

- Castilleja
- Pedicularis
- Aureolaria
Parasitic Plants

Order Lamiales - Orobanchaceae

The broomrape family contains both hemi-parasites (e.g., Indian paintbrush, lousewort, and false foxglove) and holoparasites (beechdrop, broomrape, squaw-root).
Mycotrophs (myco-heterotrophs, “saprophytes”) live without photosynthesis because they have established a co-evolutionary relationship with a mycorrhizal fungus that is attached to the root of a photosynthetic, woody plant — a three way association such that nutrients (carbon) flow from host plant root, to mycorrhizal fungus to the myco-heterotroph.

Voyria
Gentianaceae

Triuris
Triuridaceae

2 tropical forest mycotrophs
the Mycotrophs

Mycotrophs are known in eight families - three Asterid and five monocot

Voyria
Gentianaceae

2 tropical forest mycotrophs

Triuris
Triuridaceae
the Mycotrophs

Mycotrophs are known in eight families - three Asterid and five monocot

Arachnitis (Corsiaceae)

Campylosiphon (Burmanniaceae)

Voyria (Gentianaceae)
the Mycotrophs

Not surprisingly, the most common occurrences of mycotrophs occur in the families or closely related families of those photosynthetic plants with strong mycorrhizal associations - a common feature of many plants.

Corallorhiza
Coral-root
Orchidaceae

Monotropa
Indian pipe
Ericaceae
The blueberry family (Ericaceae) has traditionally been separated from the shinleaf family (Pyrolaceae) and the Indian-pipe family (Monotropaceae) because the latter two exhibit increasing dependence on the fungal association. The Monotropaceae becoming obligate mycotrophs.
DNA evidence now shows that both the Pyrolaceae and Monotropaceae are independently derived from within the Ericaceae. That is, certain members of the Ericaceae s.l. (sensu lato - or in the broad sense) are now adapted to the extreme mycorrhizal dependency.