

Sexual Reproduction in Plants

- Movement onto land is an issue for sexual reproduction in plants unlike for animals
- rely on movement of (1) pollen, (2) young embryo encased in a seed (or fruit), or (3) spores

Sexual Reproduction in Plants

Pollination and seed/spore dispersal important aspects of biosystematics in plants:

- Gene flow
- · Outcrossing vs. inbreeding
- · Reproductive isolation
- Speciation
- Co-speciation (coevolution)

Coevolution

Coevolution – interactions between two different clades as selective forces on each other, resulting in adaptations that increase their interdependency

Animal-flowering plant interaction is a classic example of coevolution:

- Plants evolve elaborate methods to attract animal pollinators
- Animals evolve specialized body parts and behaviors that aid plant pollination

What is Pollination? on: The transfer of pollen from the mal

• Pollination: The transfer of pollen from the male anther to the female stigma, in same plant or between two plants

Evolution of the Flower

Evolution of the flower is linked with evolution of pollination syndromes and why divergence/convergence is pervasive in floral features

- bisexual flowers to bring male and female parts closer
- primitive flowers had separate pollen- and carpel-bearing structures such as in *Archaefructus* (and in all gymnosperms)

Evolution of the Flower

 closed carpel for protection of ovules and seeds

Drimys - basal angiosperm

Evolution of the Flower

 fusion of carpels into one pistil efficient deposition of pollen and movement of pollen tubes down one or few style lobes

Evolution of the Flower

 epigyny - protection of ovules from probing animals

 fusion of floral parts tubular structures for restricting nectar access

Evolution of the Flower

• exotic landing platforms, spurs, nectaries, etc - specialization for specific pollinators

Evolution of the Flower

Placement of both stamens and carpels in the same flower causes inbreeding - subsequent selection for outcrossing

 protogyny or protandry - temporal sequence of anthesis or stigma receptivity

Protogyny in Asimina - pawpaw (Annonaceae)

Evolution of the Flower

Placement of both stamens and carpels in the same flower causes inbreeding - subsequent selection for outcrossing

• self incompatibility - chemical on surface of pollen and stigma/style that prevent pollen tube germination on the same flower (S allele incompatibility system)

Evolution of the Flower

Placement of both stamens and carpels in the same flower causes inbreeding - subsequent selection for outcrossing

- heterostyly reciprocal separation of anthers & stigmas
- · unisexuality reversal back to separate sexes in flowers

Cucurbita - zucchini

Pollination Syndromes

· morphologically convergent adaptive trends exhibited by the floral features of pollinated plants and, in animal pollination, the mouthpart structure and other flowerinteractive features of the pollinators

Passive

1. Wind - anemophily 2. Water - hydrophily

Active

3. Animal - zoophily (ornithophily, entomophily)

Insect Pollination - Entomophily

Modern insect pollinators

- Beetles -- Coleoptera
- Flies -- Diptera
- Ants -- Hymenoptera
- Butterflies -- Lepidoptera
- Moths -- Lepidoptera
- Bees -- Hymenoptera

Primitive type of insect pollination appears to be beetle or fly pollination

ANA Pollination January 2009 ANA grade has surprising number of ... including thermophily (heat to pollination types . . . volatize scents for fly pollination) in Illicium floridanum

• beetle flowers are pale or dull in color, but with strong odor

Fly Pollination

- carrion/dung flies have special pollination system (sapromyophily)
 with no reward flies attracted to flowers to lay eggs
- flowers brownish/purple, often mottled, with foetid odor

Asarum canadense - wild ginger (Aristolochiaceae)

Fly Pollination

• two specialist families - Aristolochiaceae (birthwort) and Araceae (arum)

Fly Pollination

• two specialist families - Aristolochiaceae (birthwort) and Araceae (arum)

Fly Pollination

- · flowers are white, blue, yellow generally not red
- strong UV light patterns
- · "nectar guides"
- fragrant (perfumes, pheromones)

Bee & Wasp Pollination

- · flowers are white, blue, yellow generally not red
- strong UV light patterns
- "nectar guides"
- fragrant (perfumes, pheromones)
- poricidal anthers buzz pollination
- · zygomorphic often landing platform

Bee & Wasp Pollination

- · Some plants take advantage of the sex drive of certain insects
- · Mirror or bee mimic orchids pheromones
- · Male insect mates with flowers
- Orchid pollinated

Ophrys ciliatum - orchid in the Mediterranean pollinated by wasp colia ciliata

Bee & Wasp Pollination

Two European bee mimic orchids pollinated by different species of bees

What pollinates this tiger orchid from Colombia?

Mrs. Santa Claus?

Catasetum Pollination

- exotic type of euglossine (Eulaema, Euglossa) bee pollination
- Catasetum orchid flowers unisexual and strongly dimorphic
- why this strong dimorphism?
- why do males of different species of Catasetum appear more different than do the females?

Catasetum pileatum sexual dimorphism in Venezuela

Catasetum Pollination

Ophrys sicula

- male euglossines collect pheromones from flowers
- male Catasetum flowers discharge pollinia (323 cm/sec)
- euglossine bees learn to avoid male flowers
- female flowers must be different looking to attract the euglossine bees - often upside down requiring new behavior

Romero & Nelson (1986) Science

Catasetum Pollination

- pollination biology drives sexual dimorphism and male-male differentiation and female-female similarity
- and explains relative degree of sexual dimorphism within an orchid species

Moth Pollination

• Night-active (nocturnal) moths visit flowers that are dusk or night blooming, white or pale yellow, fragrant, and with long tubular structures for long proboscis

• no landing platform - moths hover

Moth Pollination

 Night-active (nocturnal) moths visit flowers that are dusk or night blooming, white or pale yellow, fragrant, and with long tubular structures for long proboscis

• no landing platform - moths hover

Bird Pollination - Ornithophily

- Birds have a good sense of color, they like yellow or red flowers...
- ... but do not have a good sense of smell, so bird-pollinated flowers usually have little odor
- Flowers provide fluid nectar in greater quantities than for insects
- Hummingbird-pollinated flowers usually have long, tubular corolla
- Pollen is large and sticky

Bird Pollination - Ornithophily

Hummingbird pollination and the diversification of angiosperms: an old and

Martha Liliana Senare-Senara^{1,1}, Josathan Rolland^{1,1}, John L. Cark¹, Nicolas Salamin^{1,2,1} and Mathieu Pinter^{4,1}

• Read . . . successful association in Gesneriaceae

Does speciation occur more frequently in hummingbird OR in insect pollinated clades AND how much more (e.g., 2X, 5X, 100X)

