Magnoliophyta - Angiosperms

Survey of Angiosperms — using APG system

‘Basal angiosperms’

- ANA (‘basal families’)
- magnoliid complex
- monocots

Eudicots or tricolpates (3 pored pollen)

- ranunculids
- caryophylllids
- rosids
- asterids
We will begin our survey of angiosperms by examining the ‘basal angiosperms’ - those groups that are now shown to be the first diverging – paraphyletic!

These include all those shown here except the **eudicots** which are the bulk of dicots.

We will look at the **monocots** - a ‘basal angiosperm group’ - at the end of the semester.
What are basal angiosperms?

(1) Charles Bessey’s order Ranales with most of the dicot basal angiosperms and (2) monocots

Magnolia = primitive
What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
2. Separate, unsealed carpels

Drimys Winteraceae
What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
2. Separate, unsealed carpels
3. Follicle fruits

Leaf-like follicles
What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
2. Separate, unsealed carpels
3. Follicle fruits
4. Laminar stamens
Basal Angiosperms

What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
2. Separate, unsealed carpels
3. Follicle fruits
4. Laminar stamens
5. Tracheids, no vessel elements
Basal Angiosperms

What are basal angiosperms?

Exhibit a suite of primitive character states

1. Many parts at each whorl
2. Separate, unsealed carpels
3. Follicle fruits
4. Laminar stamens
5. Tracheids, no vessel elements
6. Pollen grains single pored, apertured, furrowed; not triaperturate, tricolpate
‘ANA’ Basal Angiosperms

The ‘ANA’ group forms a basal grade (paraphyletic)

Name derived from initials of members
‘ANA’ Basal Angiosperms

*Amborellaceae (order Amborellales)

Amborella trichopoda — only 1 species from New Caledonia

* = know this family or group!
‘ANA’ Basal Angiosperms

*Amborellaceae (order Amborellales)

- dioecious (unisexual) evergreen shrub with no vessels
‘ANA’ Basal Angiosperms

*Amborellaceae (order Amborellales)

- dioecious (unisexual) evergreen shrub with no vessels
- $P \, 5-8 \quad A \, \infty \quad G \, 0$ \quad male
- $P \, 5-8 \quad A \, 0 \quad G \, 5-6$ \quad female
- perianth spiralled – tepals
- laminar stamens
- apocarpic, not sealed
- fruits 1 seeded, drupe-like
Question: would the “first angiosperm” have had features like *Amborella*?
‘ANA’ Basal Angiosperms

Answer: not necessarily

Amborella features could be derived later (over last 100my+)

Read required paper: Sauquet et al. 2017
‘ANA’ Basal Angiosperms

Answer: not necessarily

Amborella features could be derived later (over last 100my +)

The ancestral flower of angiosperms and its early diversification.
‘ANA’ Basal Angiosperms

Austrobaileyaceae: 1 species of tropical Australian evergreen liana

- spiralled tepals; laminar stamens;
- fly pollinated; apocarpic - berries

P ∞ A ∞ G ∞
‘ANA’ Basal Angiosperms

Illiciaceae

- aromatic shrubs/vines, used in anise liquers
- Asian tropics and subtropics & disjunct in Eastern North America

[Maps of Illicium and Schisandra + Kadsura]
‘ANA’ Basal Angiosperms

Illiciaceae

P ∞ A ∞ G ∞
- spiralled tepals, not sealed carpels, 1 seeded follicles

Schisandra

Japanese anise
‘ANA’ Basal Angiosperms

Trimeniaceae: *Trimenia* with 5 spp. (Australasian trees, shrubs, vines)

- spiralled tepals; filamentous stamens; berry with one ovule
‘ANA’ Basal Angiosperms

Biogeographical distributions of the A A members of ANA support old notion that tropical Australasia was center of origin of extant angiosperms

Liberty Hyde Bailey
‘ANA’ Basal Angiosperms

Nymphaeales: 2nd lineage after Amborella to diverge

- water lilies and relatives
- worldwide distribution except arid regions
- little biogeographic structure

Distribution of Nymphaeaceae - water lilies
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

- floating or submersed leaves
- air cavities in tissue
- mucilaginous coverings
- lack of vessels

8 genera with specialized ecological aquatic niche
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

*Nuphar variegatum - yellow waterlily
= basal angiosperm

*Nymphoides peltata - water gentian
= asterid dicot

Obvious ecological convergence in floating aquatics is the rule!
Check out live aquatic plant display in Birge lobby.
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

Order Nymphaeales once included all these 3 genera, all are unrelated!

\[
\begin{align*}
Nuphar & = \text{ANA} \\
Nelumbo & = \text{eudicot} \\
Ceratophyllum & = \text{basal angiosperm}
\end{align*}
\]
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

CA 4-∞ CO ∞ A ∞ G (∞)

- showy flowers with strong scent attracting animals
- many parts at each whorl
- laminar stamens

*Nymphaea odorata - water lily
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

- showy flowers with strong scent attracting animals
- many parts at each whorl
- laminar stamens
- superior, syncarpic pistil!
‘ANA’ Basal Angiosperms

*Nymphaeaceae – water lilies

*Nuphar variegata - yellow pond lily

• petaloid sepals, petals reduced
‘ANA’ Basal Angiosperms

Amazonian *Victoria* with peltate leaves
‘ANA’ Basal Angiosperms

Cabombaceae - 2 genera often placed in Nymphaeaceae

Brasenia shreberi - water shield

- small clonal floating aquatic
- peltate leaves
- wind pollinated
‘ANA’ Basal Angiosperms

Cabombaceae - 2 genera often placed in Nymphaeaceae

Cabomba - fanwort

- submersed and floating leaved
- dimorphic leaves
- insect pollinated
Fig. 4. Floral evolution in water lilies. The pleiomeros flowers of water lilies such as *Nymphaea* are often cited as examples of the unspecialized (primitive) angiosperm floral condition. However, a phylogenetic evaluation of floral morphology in the Nymphaeales indicates several instances of secondary increase. Two highly specialized water lily genera (*Nymphaea, Victoria*) have low sepal number but the highest number of petals, stamens and carpels in the order. Flowers of *Euryale* show a similar pattern but they are adapted for self-pollination. Phylogenetic sequence follows Fig. 2.
Magnoliid Basal Angiosperms

Remainder of basal angiosperms (except monocots & hornwort)

• = Magnoliids (monophyletic)
Magnoliid Basal Angiosperms

Remainder of basal angiosperms (except monocots & hornwort)

- tropical trees or paleoherbs (cordate leaves)
- aromatic - ethereal oils ("ranalian" smell)
- beetle or fly pollination common
Magnoliid Basal Angiosperms

*Magnoliaceae (Magnoliales)

- tropical or warm temperate trees or shrubs with large, pinnate netted, stipulate leaves
- flowers large and solitary

Magnolia grandiflora
Magnoliid Basal Angiosperms

*Magnoliaceae (Magnoliales)

- **perianth =** tepals spirally arranged
- **androecium of laminar stamens**
- **gynoecium of many separate pistils or carpels**
Magnoliid Basal Angiosperms

*Magnoliaceae (Magnoliales)

- fruits of one flower = ‘cone’ or ‘aggregate’ of follicles
- dehiscent along one suture, derived from one carpel (leaf)

P ∞ A ∞ G ∞

Magnolia grandiflora
Magnoliid Basal Angiosperms

*Magnoliaceae (Magnoliales)

- fruits of one flower = ‘cone’ or ‘aggregate’ of follicles
- dehiscent along one suture, derived from one carpel (leaf)
Magnoliid Basal Angiosperms

*Magnoliaceae (Magnoliales)

Liriodendron - tulip tree, yellow poplar - *samara* (winged) fruits
Magnoliid Basal Angiosperms

*Annonaceae (Magnoliales) - custard apples

- large, woody pantropical family
- perianth in 3 sets of three tepals

P 3+3+3 A ∞ G ∞
Magnoliid Basal Angiosperms

*Annonaceae (Magnoliales) - custard apples

- large, woody pantropical family
- perianth in 3 sets of three tepals
- fruits aromatic, aggregates of one carpeled berries

[Image of Annona fruit and flowers]

Annona

anon, cherimoya, custard-apple

\[P \ 3+3+3 \quad A \ 0 \quad G \ 0 \]
Magnoliid Basal Angiosperms

*Annonaceae (Magnoliales) - custard apples

- *Asimina triloba*: paw-paw
- native to eastern North America
- flowers fly pollinated; fruits banana-like

Ohio paw-paw fair
Magnoliid Basal Angiosperms

Myristicaceae (Magnoliales) - nutmeg

- *Myristica fragrans* - nutmeg, mace
 - mace from aril
 - nutmeg from seed
Magnoliid Basal Angiosperms

Lauraceae (Laurales) - cinnamon, laurel

- aromatic trees or shrubs
- 3 merous flowers
Magnoliid Basal Angiosperms

Lauraceae (Laurales) - cinnamon, laurel

- aromatic trees or shrubs
- 3 merous flowers
- fruit 1 seeded berry or drupe

\[P^{3+3} \quad A^{3-\infty} \quad G \quad 1 \]

Persea americana
Lauraceae
© G. D. Carr
Magnoliid Basal Angiosperms

Piperaceae (Piperales) - pepper, pepperomia

- herbs, vines, shrubs, epiphytes, cordate leaves, bi- or unisexual

P 0 A 3+3 G 1
Magnoliid Basal Angiosperms

*Aristolochiaceae (Piperales) - birthwort, wild ginger

- climbing or rhizomatous herbs, cordate leaves
- aromatic, medicinal compounds [“well born” family]

Aristolochia clematitis
Magnoliid Basal Angiosperms

*Aristolochiaceae (Piperales) - birthwort, wild ginger

- calyx corollloid
- petals absent
- fly pollination
- inferior, syncarpic

CA (3) CO 0 A 6-∞ G (4-6)

A. lindneria

hypanthium

A. grandiflora

A. hirta
Magnoliid Basal Angiosperms

*Aristolochiaceae (Piperales) - birthwort, wild ginger

- *Asarum canadensis* - wild ginger
 - creeping rhizome, paired leaves, flowers basal
 - rhizome makes candied ginger
 - North American Indians used for contraceptive
Magnoliid Basal Angiosperms

*Aristolochiaceae (Piperales) - birthwort, wild ginger

- 3 petals reduced to scales
Magnoliid Basal Angiosperms

* Aristolochiaceae (Piperales) - birthwort, wild ginger

- 3 petals reduced to scales
- seeds with arils, dispersed by ants

CA (3) CO 0 A 6-∞ G (4-6)